Cargando…

Genomic and Functional Studies of Drosophila Sex Hierarchy Regulated Gene Expression in Adult Head and Nervous System Tissues

The Drosophila sex determination hierarchy controls all aspects of somatic sexual differentiation, including sex-specific differences in adult morphology and behavior. To gain insight into the molecular-genetic specification of reproductive behaviors and physiology, we identified genes expressed in...

Descripción completa

Detalles Bibliográficos
Autores principales: Goldman, Thomas D, Arbeitman, Michelle N
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2082469/
https://www.ncbi.nlm.nih.gov/pubmed/18039034
http://dx.doi.org/10.1371/journal.pgen.0030216
Descripción
Sumario:The Drosophila sex determination hierarchy controls all aspects of somatic sexual differentiation, including sex-specific differences in adult morphology and behavior. To gain insight into the molecular-genetic specification of reproductive behaviors and physiology, we identified genes expressed in the adult head and central nervous system that are regulated downstream of sex-specific transcription factors encoded by doublesex (dsx) and fruitless (fru). We used a microarray approach and identified 54 genes regulated downstream of dsx. Furthermore, based on these expression studies we identified new modes of DSX-regulated gene expression. We also identified 90 and 26 genes regulated in the adult head and central nervous system tissues, respectively, downstream of the sex-specific transcription factors encoded by fru. In addition, we present molecular-genetic analyses of two genes identified in our studies, calphotin (cpn) and defective proboscis extension response (dpr), and begin to describe their functional roles in male behaviors. We show that dpr and dpr-expressing cells are required for the proper timing of male courtship behaviors.