Cargando…

A study of 7-deaza-2′-deoxyguanosine–2′-deoxycytidine base pairing in DNA

The incorporation of 7-deazaguanine modifications into DNA is frequently used to probe protein recognition of H-bonding information in the major groove of DNA. While it is generally assumed that 7-deazaguanine forms a normal Watson–Crick base pair with cytosine, detailed thermodynamic and structural...

Descripción completa

Detalles Bibliográficos
Autores principales: Ganguly, Manjori, Wang, Feng, Kaushik, Mahima, Stone, Michael P., Marky, Luis A., Gold, Barry
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2094092/
https://www.ncbi.nlm.nih.gov/pubmed/17855404
http://dx.doi.org/10.1093/nar/gkm670
Descripción
Sumario:The incorporation of 7-deazaguanine modifications into DNA is frequently used to probe protein recognition of H-bonding information in the major groove of DNA. While it is generally assumed that 7-deazaguanine forms a normal Watson–Crick base pair with cytosine, detailed thermodynamic and structural analyses of this modification have not been reported. The replacement of the 7-N atom on guanine with a C–H, alters the electronic properties of the heterocycle and eliminates a major groove cation-binding site that could affect the organization of salts and water in the major groove. We report herein the characterization of synthetic DNA oligomers containing 7-deazaguanine using a variety of complementary approaches: UV thermal melting, differential scanning calorimetry (DSC), circular dichroism (CD), chemical probing and NMR. The results indicate that the incorporation of a 7-deazaguanine modification has a significant effect on the dynamic structure of the DNA at the flanking residue. This appears to be mediated by changes in hydration and cation organization.