Cargando…
Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
BACKGROUND: The regulation of gene expression is achieved through gene regulatory networks (GRNs) in which collections of genes interact with one another and other substances in a cell. In order to understand the underlying function of organisms, it is necessary to study the behavior of genes in a g...
Autores principales: | Li, Peng, Zhang, Chaoyang, Perkins, Edward J, Gong, Ping, Deng, Youping |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2099481/ https://www.ncbi.nlm.nih.gov/pubmed/18047712 http://dx.doi.org/10.1186/1471-2105-8-S7-S13 |
Ejemplares similares
-
Gene regulatory network inference and validation using relative change ratio analysis and time-delayed dynamic Bayesian network
por: Li, Peng, et al.
Publicado: (2014) -
Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks
por: Chaitankar, Vijender, et al.
Publicado: (2010) -
Steady-State Analysis of Genetic Regulatory Networks Modelled by
Probabilistic Boolean Networks
por: Shmulevich, Ilya, et al.
Publicado: (2003) -
Bayesian probabilistic network modeling from multiple independent replicates
por: Patton, Kristopher L, et al.
Publicado: (2012) -
RefNetBuilder: a platform for construction of integrated reference gene regulatory networks from expressed sequence tags
por: Li, Ying, et al.
Publicado: (2011)