Cargando…
A novel, fast, HMM-with-Duration implementation – for application with a new, pattern recognition informed, nanopore detector
BACKGROUND: Hidden Markov Models (HMMs) provide an excellent means for structure identification and feature extraction on stochastic sequential data. An HMM-with-Duration (HMMwD) is an HMM that can also exactly model the hidden-label length (recurrence) distributions – while the regular HMM will imp...
Autores principales: | Winters-Hilt, Stephen, Baribault, Carl |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2099487/ https://www.ncbi.nlm.nih.gov/pubmed/18047718 http://dx.doi.org/10.1186/1471-2105-8-S7-S19 |
Ejemplares similares
-
Duration learning for analysis of nanopore ionic current blockades
por: Churbanov, Alexander, et al.
Publicado: (2007) -
Nanopore Detector based analysis of single-molecule conformational kinetics and binding interactions
por: Winters-Hilt, Stephen
Publicado: (2006) -
The α-Hemolysin nanopore transduction detector – single-molecule binding studies and immunological screening of antibodies and aptamers
por: Winters-Hilt, Stephen
Publicado: (2007) -
Cheminformatics methods for novel nanopore analysis of HIV DNA termini
por: Winters-Hilt, Stephen, et al.
Publicado: (2006) -
Analysis of nanopore detector measurements using Machine-Learning methods, with application to single-molecule kinetic analysis
por: Landry, Matthew, et al.
Publicado: (2007)