Cargando…

Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting

BACKGROUND: Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregati...

Descripción completa

Detalles Bibliográficos
Autores principales: Maeda, Takuya T, Ajioka, Itsuki, Nakajima, Kazunori
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2100066/
https://www.ncbi.nlm.nih.gov/pubmed/17883828
http://dx.doi.org/10.1186/1752-0509-1-43
_version_ 1782138329564708864
author Maeda, Takuya T
Ajioka, Itsuki
Nakajima, Kazunori
author_facet Maeda, Takuya T
Ajioka, Itsuki
Nakajima, Kazunori
author_sort Maeda, Takuya T
collection PubMed
description BACKGROUND: Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. RESULTS: We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. CONCLUSION: We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model could predict directional cell movement and its mobility are important in the "inside and outside" pattern of cell sorting. Those behaviors are altered by signal molecules and consequently affect the global pattern of the cell sorting. Our model is also applicable to other developmental processes beyond cell sorting.
format Text
id pubmed-2100066
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-21000662007-12-03 Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting Maeda, Takuya T Ajioka, Itsuki Nakajima, Kazunori BMC Syst Biol Research Article BACKGROUND: Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. RESULTS: We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. CONCLUSION: We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model could predict directional cell movement and its mobility are important in the "inside and outside" pattern of cell sorting. Those behaviors are altered by signal molecules and consequently affect the global pattern of the cell sorting. Our model is also applicable to other developmental processes beyond cell sorting. BioMed Central 2007-09-20 /pmc/articles/PMC2100066/ /pubmed/17883828 http://dx.doi.org/10.1186/1752-0509-1-43 Text en Copyright © 2007 Maeda et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Maeda, Takuya T
Ajioka, Itsuki
Nakajima, Kazunori
Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting
title Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting
title_full Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting
title_fullStr Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting
title_full_unstemmed Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting
title_short Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting
title_sort computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2100066/
https://www.ncbi.nlm.nih.gov/pubmed/17883828
http://dx.doi.org/10.1186/1752-0509-1-43
work_keys_str_mv AT maedatakuyat computationalcellmodelbasedonautonomouscellmovementregulatedbycellcellsignallingsuccessfullyrecapitulatestheinsideandoutsidepatternofcellsorting
AT ajiokaitsuki computationalcellmodelbasedonautonomouscellmovementregulatedbycellcellsignallingsuccessfullyrecapitulatestheinsideandoutsidepatternofcellsorting
AT nakajimakazunori computationalcellmodelbasedonautonomouscellmovementregulatedbycellcellsignallingsuccessfullyrecapitulatestheinsideandoutsidepatternofcellsorting