Cargando…

Early Detection of Tuberculosis Outbreaks among the San Francisco Homeless: Trade-Offs Between Spatial Resolution and Temporal Scale

BACKGROUND: San Francisco has the highest rate of tuberculosis (TB) in the U.S. with recurrent outbreaks among the homeless and marginally housed. It has been shown for syndromic data that when exact geographic coordinates of individual patients are used as the spatial base for outbreak detection, h...

Descripción completa

Detalles Bibliográficos
Autores principales: Higgs, Brandon W., Mohtashemi, Mojdeh, Grinsdale, Jennifer, Kawamura, L. Masae
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2100173/
https://www.ncbi.nlm.nih.gov/pubmed/18074010
http://dx.doi.org/10.1371/journal.pone.0001284
Descripción
Sumario:BACKGROUND: San Francisco has the highest rate of tuberculosis (TB) in the U.S. with recurrent outbreaks among the homeless and marginally housed. It has been shown for syndromic data that when exact geographic coordinates of individual patients are used as the spatial base for outbreak detection, higher detection rates and accuracy are achieved compared to when data are aggregated into administrative regions such as zip codes and census tracts. We examine the effect of varying the spatial resolution in the TB data within the San Francisco homeless population on detection sensitivity, timeliness, and the amount of historical data needed to achieve better performance measures. METHODS AND FINDINGS: We apply a variation of space-time permutation scan statistic to the TB data in which a patient's location is either represented by its exact coordinates or by the centroid of its census tract. We show that the detection sensitivity and timeliness of the method generally improve when exact locations are used to identify real TB outbreaks. When outbreaks are simulated, while the detection timeliness is consistently improved when exact coordinates are used, the detection sensitivity varies depending on the size of the spatial scanning window and the number of tracts in which cases are simulated. Finally, we show that when exact locations are used, smaller amount of historical data is required for training the model. CONCLUSION: Systematic characterization of the spatio-temporal distribution of TB cases can widely benefit real time surveillance and guide public health investigations of TB outbreaks as to what level of spatial resolution results in improved detection sensitivity and timeliness. Trading higher spatial resolution for better performance is ultimately a tradeoff between maintaining patient confidentiality and improving public health when sharing data. Understanding such tradeoffs is critical to managing the complex interplay between public policy and public health. This study is a step forward in this direction.