Cargando…

Stimulation of an α1-adrenergic receptor downregulates ecto-5′ nucleotidase activity on the apical membrane of RPE cells

The purines ATP and adenosine play an important role in the communication between the photoreceptors and the retinal pigment epithelium (RPE). While the RPE is known to release ATP into subretinal space, the source of extracellular adenosine is unclear. In other tissues, ecto-nucleotidases mediate t...

Descripción completa

Detalles Bibliográficos
Autores principales: Reigada, David, Zhang, Xiulan, Crespo, Ana, Nguyen, Johnathan, Liu, Ji, Pendrak, Klara, Stone, Richard A., Laties, Alan M., Mitchell, Claire
Formato: Texto
Lenguaje:English
Publicado: Springer Netherlands 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2104005/
https://www.ncbi.nlm.nih.gov/pubmed/18404487
http://dx.doi.org/10.1007/s11302-005-3980-7
_version_ 1782138344629600256
author Reigada, David
Zhang, Xiulan
Crespo, Ana
Nguyen, Johnathan
Liu, Ji
Pendrak, Klara
Stone, Richard A.
Laties, Alan M.
Mitchell, Claire
author_facet Reigada, David
Zhang, Xiulan
Crespo, Ana
Nguyen, Johnathan
Liu, Ji
Pendrak, Klara
Stone, Richard A.
Laties, Alan M.
Mitchell, Claire
author_sort Reigada, David
collection PubMed
description The purines ATP and adenosine play an important role in the communication between the photoreceptors and the retinal pigment epithelium (RPE). While the RPE is known to release ATP into subretinal space, the source of extracellular adenosine is unclear. In other tissues, ecto-nucleotidases mediate the consecutive dephosphorylation of ATP to AMP, and AMP is converted to adenosine by ecto-5′ nucleotidase (CD73). This study identifies ecto-5′ nucleotidase on RPE cells and investigates modulation of enzyme activity. The RPE was the most active site of 5′AMP dephosphorylation in the posterior rat eye. The ecto-5′ nucleotidase inhibitor αβmADP prevented the production adenosine by the apical membrane of the bovine RPE. Cultured human ARPE-19 cells expressed mRNA and protein for ecto-5′ nucleotidase. The production of phosphate from 5′AMP by ARPE-19 cells was inhibited by αβmADP, but the ecto-alkaline phosphatase inhibitor levamisole had no effect. Degradation of 5′AMP was blocked by norepinephrine, epinephrine and phenylephrine, with inhibition by antagonists prazosin and corynanthine implicating the α1 adrenergic receptor. The block of enzyme activity by norepinephrine was rapid, occurring within 1 min, and was similar at both 4 and 37°C, consistent with cleavage of the enzyme from its GPI anchor. HPLC measurements indicated norepinephrine reduced levels of adenosine in the bath. In the apical face of the bovine-RPE eyecup, norepinephrine reduced the production of phosphate from 5′AMP, suggesting that both receptor and enzyme face sub-retinal space. In conclusion, RPE cells express ecto-5′ nucleotidase, with activity on the apical membrane, and stimulation of α-1 adrenergic receptors downregulates activity. As epinephrine is released at light onset, and adenosine can inhibit phagocytosis, the corresponding decrease in subretinal adenosine levels may contribute to the enhanced the phagocytosis of rod outer segments that occurs at this time.
format Text
id pubmed-2104005
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher Springer Netherlands
record_format MEDLINE/PubMed
spelling pubmed-21040052008-02-27 Stimulation of an α1-adrenergic receptor downregulates ecto-5′ nucleotidase activity on the apical membrane of RPE cells Reigada, David Zhang, Xiulan Crespo, Ana Nguyen, Johnathan Liu, Ji Pendrak, Klara Stone, Richard A. Laties, Alan M. Mitchell, Claire Purinergic Signal Article The purines ATP and adenosine play an important role in the communication between the photoreceptors and the retinal pigment epithelium (RPE). While the RPE is known to release ATP into subretinal space, the source of extracellular adenosine is unclear. In other tissues, ecto-nucleotidases mediate the consecutive dephosphorylation of ATP to AMP, and AMP is converted to adenosine by ecto-5′ nucleotidase (CD73). This study identifies ecto-5′ nucleotidase on RPE cells and investigates modulation of enzyme activity. The RPE was the most active site of 5′AMP dephosphorylation in the posterior rat eye. The ecto-5′ nucleotidase inhibitor αβmADP prevented the production adenosine by the apical membrane of the bovine RPE. Cultured human ARPE-19 cells expressed mRNA and protein for ecto-5′ nucleotidase. The production of phosphate from 5′AMP by ARPE-19 cells was inhibited by αβmADP, but the ecto-alkaline phosphatase inhibitor levamisole had no effect. Degradation of 5′AMP was blocked by norepinephrine, epinephrine and phenylephrine, with inhibition by antagonists prazosin and corynanthine implicating the α1 adrenergic receptor. The block of enzyme activity by norepinephrine was rapid, occurring within 1 min, and was similar at both 4 and 37°C, consistent with cleavage of the enzyme from its GPI anchor. HPLC measurements indicated norepinephrine reduced levels of adenosine in the bath. In the apical face of the bovine-RPE eyecup, norepinephrine reduced the production of phosphate from 5′AMP, suggesting that both receptor and enzyme face sub-retinal space. In conclusion, RPE cells express ecto-5′ nucleotidase, with activity on the apical membrane, and stimulation of α-1 adrenergic receptors downregulates activity. As epinephrine is released at light onset, and adenosine can inhibit phagocytosis, the corresponding decrease in subretinal adenosine levels may contribute to the enhanced the phagocytosis of rod outer segments that occurs at this time. Springer Netherlands 2006-08-11 2006-09 /pmc/articles/PMC2104005/ /pubmed/18404487 http://dx.doi.org/10.1007/s11302-005-3980-7 Text en © Springer 2006
spellingShingle Article
Reigada, David
Zhang, Xiulan
Crespo, Ana
Nguyen, Johnathan
Liu, Ji
Pendrak, Klara
Stone, Richard A.
Laties, Alan M.
Mitchell, Claire
Stimulation of an α1-adrenergic receptor downregulates ecto-5′ nucleotidase activity on the apical membrane of RPE cells
title Stimulation of an α1-adrenergic receptor downregulates ecto-5′ nucleotidase activity on the apical membrane of RPE cells
title_full Stimulation of an α1-adrenergic receptor downregulates ecto-5′ nucleotidase activity on the apical membrane of RPE cells
title_fullStr Stimulation of an α1-adrenergic receptor downregulates ecto-5′ nucleotidase activity on the apical membrane of RPE cells
title_full_unstemmed Stimulation of an α1-adrenergic receptor downregulates ecto-5′ nucleotidase activity on the apical membrane of RPE cells
title_short Stimulation of an α1-adrenergic receptor downregulates ecto-5′ nucleotidase activity on the apical membrane of RPE cells
title_sort stimulation of an α1-adrenergic receptor downregulates ecto-5′ nucleotidase activity on the apical membrane of rpe cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2104005/
https://www.ncbi.nlm.nih.gov/pubmed/18404487
http://dx.doi.org/10.1007/s11302-005-3980-7
work_keys_str_mv AT reigadadavid stimulationofana1adrenergicreceptordownregulatesecto5nucleotidaseactivityontheapicalmembraneofrpecells
AT zhangxiulan stimulationofana1adrenergicreceptordownregulatesecto5nucleotidaseactivityontheapicalmembraneofrpecells
AT crespoana stimulationofana1adrenergicreceptordownregulatesecto5nucleotidaseactivityontheapicalmembraneofrpecells
AT nguyenjohnathan stimulationofana1adrenergicreceptordownregulatesecto5nucleotidaseactivityontheapicalmembraneofrpecells
AT liuji stimulationofana1adrenergicreceptordownregulatesecto5nucleotidaseactivityontheapicalmembraneofrpecells
AT pendrakklara stimulationofana1adrenergicreceptordownregulatesecto5nucleotidaseactivityontheapicalmembraneofrpecells
AT stonericharda stimulationofana1adrenergicreceptordownregulatesecto5nucleotidaseactivityontheapicalmembraneofrpecells
AT latiesalanm stimulationofana1adrenergicreceptordownregulatesecto5nucleotidaseactivityontheapicalmembraneofrpecells
AT mitchellclaire stimulationofana1adrenergicreceptordownregulatesecto5nucleotidaseactivityontheapicalmembraneofrpecells