Cargando…

STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION : I. Modifications of Surface Membrane Permeability

Membrane permeability of an epithelial cell junction (Drosophila salivary gland) was examined with intracellular microelectrodes and with fluorescent tracers. In contrast to the non-junctional cell membrane surface, which has a low permeability to ions (10(-4) mho/cm(2)), the junctional membrane sur...

Descripción completa

Detalles Bibliográficos
Autores principales: Loewenstein, Werner R., Kanno, Yoshinobu
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1964
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2106478/
https://www.ncbi.nlm.nih.gov/pubmed/14206423
Descripción
Sumario:Membrane permeability of an epithelial cell junction (Drosophila salivary gland) was examined with intracellular microelectrodes and with fluorescent tracers. In contrast to the non-junctional cell membrane surface, which has a low permeability to ions (10(-4) mho/cm(2)), the junctional membrane surface is highly permeable. In fact, it introduces no substantial restriction to ion flow beyond that in the cytoplasm; the resistance through a chain of cells (150 Ω cm) is only slightly greater than in extruded cytoplasm (100 Ω cm). The diffusion resistance along the intercellular space to the exterior, on the other hand, is very high. Here, there exists an ion barrier of, at least, 10(4)Ω cm(2). As a result, small ions and fluorescein move rather freely from one cell to the next, but do not leak appreciably through the intercellular space to the exterior. The organ here, rather than the single cell, appears to be the unit of ion environment. The possible underlying structural aspects are discussed.