Cargando…

ULTRASTRUCTURAL ORGANIZATION OF OBLIQUELY STRIATED MUSCLE FIBERS IN ASCARIS LUMBRICOIDES

The somatic musculature of the nematode, Ascaris, is currently thought to consist of smooth muscle fibers, which contain intracellular supporting fibrils arranged in a regular pattern. Electron microscopic examination shows that the muscle fibers are, in fact, comparable to the striated muscles of v...

Descripción completa

Detalles Bibliográficos
Autor principal: Rosenbluth, Jack
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1965
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2106669/
https://www.ncbi.nlm.nih.gov/pubmed/5839255
Descripción
Sumario:The somatic musculature of the nematode, Ascaris, is currently thought to consist of smooth muscle fibers, which contain intracellular supporting fibrils arranged in a regular pattern. Electron microscopic examination shows that the muscle fibers are, in fact, comparable to the striated muscles of vertebrates in that they contain interdigitating arrays of thick and thin myofilaments which form H, A, and I bands. In the A bands each thick filament is surrounded by about 10 to 12 thin filaments. The earlier confusion about the classification of this muscle probably arose from the fact that in one longitudinal plane the myofilaments are markedly staggered and, as a result, the striations in that plane of section are not transverse but oblique, forming an angle of only about 6° with the filament axis. The apparent direction of the striations changes with the plane of the section and may vary all the way from radial to longitudinal. A three-dimensional model is proposed which accounts for the appearance of this muscle in various planes. Z lines as such are absent but are replaced by smaller, less orderly, counterpart "Z bundles" to which thin filaments attach. These bundles are closely associated with fibrillar dense bodies and with deep infoldings of the plasma membrane. The invaginations of the plasma membrane together with intracellular, flattened, membranous cisternae form dyads and triads. It is suggested that these complexes, which also occur at the cell surface, may constitute strategically located, low-impedance patches through which local currents are channeled selectively.