Cargando…

STUDIES OF NATIVE GLYCOGEN ISOLATED FROM SYNCHRONIZED TETRAHYMENA PYRIFORMIS (HSM)

Native glycogen was isolated from Tetrahymena pyriformis (HSM) by isopycnic centrifugation in cesium chloride density gradients. A density of 1.62 to 1.65 was isopycnic for glycogen. Most of the banded glycogen existed as 35 to 40 mµ particles which had a sedimentation coefficient of 214. These part...

Descripción completa

Detalles Bibliográficos
Autores principales: Barber, Albert A., Harris, Warren W., Padilla, George M.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1965
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2106729/
https://www.ncbi.nlm.nih.gov/pubmed/5884627
_version_ 1782138582381625344
author Barber, Albert A.
Harris, Warren W.
Padilla, George M.
author_facet Barber, Albert A.
Harris, Warren W.
Padilla, George M.
author_sort Barber, Albert A.
collection PubMed
description Native glycogen was isolated from Tetrahymena pyriformis (HSM) by isopycnic centrifugation in cesium chloride density gradients. A density of 1.62 to 1.65 was isopycnic for glycogen. Most of the banded glycogen existed as 35 to 40 mµ particles which had a sedimentation coefficient of 214. These particles were composed of aggregates of 2 to 3 mµ spherical particles. Extraction of glycogen with hot alkali reduced the sedimentation coefficient of native glycogen from 214 to 64.7 and the particle diameter from approximately 40 to 20 mµ and smaller. Cell division was synchronized by a repetitive 12-hour temperature cycle, and glycogen was measured at several times during the cell cycle. The temperature cycle consisted of 9.5 hours at 12°C and 2.5 hours at 27°C. Approximately 90 per cent of the cells divided during the last 1.5 hours of the warm period. The carbohydrate/protein ratio of cells at the end of the cold period was 0.27 and was reduced slightly during the warm period. Glucose was incorporated into glycogen during both periods, although the rate of incorporation was greater during the warm period. No preferential incorporation on the basis of particle size was noted. Incorporation was measured in both native glycogen and KOH-extracted glycogen. Tetrahymena glycogen is compared with rat liver glycogen previously isolated by similar procedures, and the significance of using combined rate-zonal and isopycnic centrifugation for isolating native glycogen is discussed.
format Text
id pubmed-2106729
institution National Center for Biotechnology Information
language English
publishDate 1965
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21067292008-05-01 STUDIES OF NATIVE GLYCOGEN ISOLATED FROM SYNCHRONIZED TETRAHYMENA PYRIFORMIS (HSM) Barber, Albert A. Harris, Warren W. Padilla, George M. J Cell Biol Article Native glycogen was isolated from Tetrahymena pyriformis (HSM) by isopycnic centrifugation in cesium chloride density gradients. A density of 1.62 to 1.65 was isopycnic for glycogen. Most of the banded glycogen existed as 35 to 40 mµ particles which had a sedimentation coefficient of 214. These particles were composed of aggregates of 2 to 3 mµ spherical particles. Extraction of glycogen with hot alkali reduced the sedimentation coefficient of native glycogen from 214 to 64.7 and the particle diameter from approximately 40 to 20 mµ and smaller. Cell division was synchronized by a repetitive 12-hour temperature cycle, and glycogen was measured at several times during the cell cycle. The temperature cycle consisted of 9.5 hours at 12°C and 2.5 hours at 27°C. Approximately 90 per cent of the cells divided during the last 1.5 hours of the warm period. The carbohydrate/protein ratio of cells at the end of the cold period was 0.27 and was reduced slightly during the warm period. Glucose was incorporated into glycogen during both periods, although the rate of incorporation was greater during the warm period. No preferential incorporation on the basis of particle size was noted. Incorporation was measured in both native glycogen and KOH-extracted glycogen. Tetrahymena glycogen is compared with rat liver glycogen previously isolated by similar procedures, and the significance of using combined rate-zonal and isopycnic centrifugation for isolating native glycogen is discussed. The Rockefeller University Press 1965-11-01 /pmc/articles/PMC2106729/ /pubmed/5884627 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Barber, Albert A.
Harris, Warren W.
Padilla, George M.
STUDIES OF NATIVE GLYCOGEN ISOLATED FROM SYNCHRONIZED TETRAHYMENA PYRIFORMIS (HSM)
title STUDIES OF NATIVE GLYCOGEN ISOLATED FROM SYNCHRONIZED TETRAHYMENA PYRIFORMIS (HSM)
title_full STUDIES OF NATIVE GLYCOGEN ISOLATED FROM SYNCHRONIZED TETRAHYMENA PYRIFORMIS (HSM)
title_fullStr STUDIES OF NATIVE GLYCOGEN ISOLATED FROM SYNCHRONIZED TETRAHYMENA PYRIFORMIS (HSM)
title_full_unstemmed STUDIES OF NATIVE GLYCOGEN ISOLATED FROM SYNCHRONIZED TETRAHYMENA PYRIFORMIS (HSM)
title_short STUDIES OF NATIVE GLYCOGEN ISOLATED FROM SYNCHRONIZED TETRAHYMENA PYRIFORMIS (HSM)
title_sort studies of native glycogen isolated from synchronized tetrahymena pyriformis (hsm)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2106729/
https://www.ncbi.nlm.nih.gov/pubmed/5884627
work_keys_str_mv AT barberalberta studiesofnativeglycogenisolatedfromsynchronizedtetrahymenapyriformishsm
AT harriswarrenw studiesofnativeglycogenisolatedfromsynchronizedtetrahymenapyriformishsm
AT padillageorgem studiesofnativeglycogenisolatedfromsynchronizedtetrahymenapyriformishsm