Cargando…

Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes

A large-scale enhancer detection screen was performed in the zebrafish using a retroviral vector carrying a basal promoter and a fluorescent protein reporter cassette. Analysis of insertional hotspots uncovered areas around developmental regulatory genes in which an insertion results in the same glo...

Descripción completa

Detalles Bibliográficos
Autores principales: Kikuta, Hiroshi, Fredman, David, Rinkwitz, Silke, Lenhard, Boris, Becker, Thomas S
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2106839/
https://www.ncbi.nlm.nih.gov/pubmed/18047696
http://dx.doi.org/10.1186/gb-2007-8-s1-s4
_version_ 1782138614403039232
author Kikuta, Hiroshi
Fredman, David
Rinkwitz, Silke
Lenhard, Boris
Becker, Thomas S
author_facet Kikuta, Hiroshi
Fredman, David
Rinkwitz, Silke
Lenhard, Boris
Becker, Thomas S
author_sort Kikuta, Hiroshi
collection PubMed
description A large-scale enhancer detection screen was performed in the zebrafish using a retroviral vector carrying a basal promoter and a fluorescent protein reporter cassette. Analysis of insertional hotspots uncovered areas around developmental regulatory genes in which an insertion results in the same global expression pattern, irrespective of exact position. These areas coincide with vertebrate chromosomal segments containing identical gene order; a phenomenon known as conserved synteny and thought to be a vestige of evolution. Genomic comparative studies have found large numbers of highly conserved noncoding elements (HCNEs) spanning these and other loci. HCNEs are thought to act as transcriptional enhancers based on the finding that many of those that have been tested direct tissue specific expression in transient or transgenic assays. Although gene order in hox and other gene clusters has long been known to be conserved because of shared regulatory sequences or overlapping transcriptional units, the chromosomal areas found through insertional hotspots contain only one or a few developmental regulatory genes as well as phylogenetically unrelated genes. We have termed these regions genomic regulatory blocks (GRBs), and show that they underlie the phenomenon of conserved synteny through all sequenced vertebrate genomes. After teleost whole genome duplication, a subset of GRBs were retained in two copies, underwent degenerative changes compared with tetrapod loci that exist as single copy, and that therefore can be viewed as representing the ancestral form. We discuss these findings in light of evolution of vertebrate chromosomal architecture and the identification of human disease mutations.
format Text
id pubmed-2106839
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-21068392007-12-05 Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes Kikuta, Hiroshi Fredman, David Rinkwitz, Silke Lenhard, Boris Becker, Thomas S Genome Biol Review A large-scale enhancer detection screen was performed in the zebrafish using a retroviral vector carrying a basal promoter and a fluorescent protein reporter cassette. Analysis of insertional hotspots uncovered areas around developmental regulatory genes in which an insertion results in the same global expression pattern, irrespective of exact position. These areas coincide with vertebrate chromosomal segments containing identical gene order; a phenomenon known as conserved synteny and thought to be a vestige of evolution. Genomic comparative studies have found large numbers of highly conserved noncoding elements (HCNEs) spanning these and other loci. HCNEs are thought to act as transcriptional enhancers based on the finding that many of those that have been tested direct tissue specific expression in transient or transgenic assays. Although gene order in hox and other gene clusters has long been known to be conserved because of shared regulatory sequences or overlapping transcriptional units, the chromosomal areas found through insertional hotspots contain only one or a few developmental regulatory genes as well as phylogenetically unrelated genes. We have termed these regions genomic regulatory blocks (GRBs), and show that they underlie the phenomenon of conserved synteny through all sequenced vertebrate genomes. After teleost whole genome duplication, a subset of GRBs were retained in two copies, underwent degenerative changes compared with tetrapod loci that exist as single copy, and that therefore can be viewed as representing the ancestral form. We discuss these findings in light of evolution of vertebrate chromosomal architecture and the identification of human disease mutations. BioMed Central 2007 2007-10-31 /pmc/articles/PMC2106839/ /pubmed/18047696 http://dx.doi.org/10.1186/gb-2007-8-s1-s4 Text en Copyright © 2007 BioMed Central Ltd
spellingShingle Review
Kikuta, Hiroshi
Fredman, David
Rinkwitz, Silke
Lenhard, Boris
Becker, Thomas S
Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes
title Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes
title_full Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes
title_fullStr Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes
title_full_unstemmed Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes
title_short Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes
title_sort retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2106839/
https://www.ncbi.nlm.nih.gov/pubmed/18047696
http://dx.doi.org/10.1186/gb-2007-8-s1-s4
work_keys_str_mv AT kikutahiroshi retroviralenhancerdetectioninsertionsinzebrafishcombinedwithcomparativegenomicsrevealgenomicregulatoryblocksafundamentalfeatureofvertebrategenomes
AT fredmandavid retroviralenhancerdetectioninsertionsinzebrafishcombinedwithcomparativegenomicsrevealgenomicregulatoryblocksafundamentalfeatureofvertebrategenomes
AT rinkwitzsilke retroviralenhancerdetectioninsertionsinzebrafishcombinedwithcomparativegenomicsrevealgenomicregulatoryblocksafundamentalfeatureofvertebrategenomes
AT lenhardboris retroviralenhancerdetectioninsertionsinzebrafishcombinedwithcomparativegenomicsrevealgenomicregulatoryblocksafundamentalfeatureofvertebrategenomes
AT beckerthomass retroviralenhancerdetectioninsertionsinzebrafishcombinedwithcomparativegenomicsrevealgenomicregulatoryblocksafundamentalfeatureofvertebrategenomes