Cargando…

AN ANALYSIS OF HETEROCHROMATIN IN MAIZE ROOT TIPS

The B chromosomes of maize are condensed in appearance during interphase and are relatively inert genetically; therefore they fulfill the definition of heterochromatin. This heterochromatin was studied in root meristem cells by radioautography following administration of tritiated thymidine and cyti...

Descripción completa

Detalles Bibliográficos
Autor principal: Himes, Marion
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1967
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2107112/
https://www.ncbi.nlm.nih.gov/pubmed/6061715
Descripción
Sumario:The B chromosomes of maize are condensed in appearance during interphase and are relatively inert genetically; therefore they fulfill the definition of heterochromatin. This heterochromatin was studied in root meristem cells by radioautography following administration of tritiated thymidine and cytidine, and was found to behave in a characteristic way, i.e. it showed asynchronous DNA synthesis and very low, if any, RNA synthesis. A cytochemical comparison of normal maize nuclei with nuclei from isogenic maize stock containing approximately 15–20 B-chromosomes in addition to the normal complement has revealed the following: (a) the DNA and histone contents are greater in nuclei with B chromosomes; (b) the proportion of DNA to histone is identical with that of nuclei containing only normal chromosomes; (c) the amount of nonhistone protein in proportion to DNA in interphase is less in nuclei with B chromosomes than in normal nuclei. In condensed B chromosomes the ratio of nonhistone protein to DNA is similar to that in other condensed chromatin, such as metaphase chromosomes and degenerating nuclei. The B chromosomes appear to have no effect on nucleolar RNA and protein. Replication of B chromosomes is precisely controlled and is comparable to that of the ordinary chromosomes not only in synthesis for mitosis but also in formation of polyploid nuclei of root cap and protoxylem cells.