Cargando…

CYTOLOGICAL STUDIES OF ORGANOTYPIC CULTURES OF RAT DORSAL ROOT GANGLIA FOLLOWING X-IRRADIATION IN VITRO : II. Changes in Schwann Cells, Myelin Sheaths, and Nerve Fibers

Under suitable conditions rat dorsal root ganglia differentiate and myelinate in culture, providing an organotypic model of the ganglion (8). Mature cultures of this type were irradiated with a 40 kR dose of 184 kvp X-rays and, after daily observation in the living state, were fixed for light and el...

Descripción completa

Detalles Bibliográficos
Autores principales: Masurovsky, Edmund B., Bunge, Mary Bartlett, Bunge, Richard P.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1967
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2107259/
https://www.ncbi.nlm.nih.gov/pubmed/10976235
_version_ 1782138735302803456
author Masurovsky, Edmund B.
Bunge, Mary Bartlett
Bunge, Richard P.
author_facet Masurovsky, Edmund B.
Bunge, Mary Bartlett
Bunge, Richard P.
author_sort Masurovsky, Edmund B.
collection PubMed
description Under suitable conditions rat dorsal root ganglia differentiate and myelinate in culture, providing an organotypic model of the ganglion (8). Mature cultures of this type were irradiated with a 40 kR dose of 184 kvp X-rays and, after daily observation in the living state, were fixed for light and electron microscopy. Within 24 hr after irradiation, numerous Schwann cells investing unmyelinated axons acutely degenerate. The axons thus denuded display little change. Conversely, few ultrastructural changes develop in Schwann cells investing myelinated axons until after the 4th day. During the 4–14 day period, these Schwann cells and their related myelin sheaths undergo progressive deterioration. Associated axons decrease in diameter but are usually maintained. Myelin deterioration begins as a nodal lengthening and then progresses along two different routes. In intact Schwann cells, fragmentation of myelin begins in a pattern reminiscent of Wallerian degeneration, but its slow breakdown thereafter suggests metabolic disturbances in these Schwann cells. The second pattern of myelin deterioration, occurring after complete degeneration of the related Schwann cell, involves unusual configurational changes in the myelin lamellae. Atypical repeating periods are formed by systematic splitting of lamellae at each major dense line with further splitting at the intraperiod line (Type I) or by splitting in the region of every other intraperiod line (Type II); some sheaths display a compact, wavy, inner zone and an abnormally widened lamellar spacing peripherally (Type III). Extensive blebbing of myelin remnants characterizes the final stages of this extracellular myelin degradation. These observations provide the first description of ultrastructural changes produced by ionizing radiation in nerve fascicles in vitro.
format Text
id pubmed-2107259
institution National Center for Biotechnology Information
language English
publishDate 1967
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21072592008-05-01 CYTOLOGICAL STUDIES OF ORGANOTYPIC CULTURES OF RAT DORSAL ROOT GANGLIA FOLLOWING X-IRRADIATION IN VITRO : II. Changes in Schwann Cells, Myelin Sheaths, and Nerve Fibers Masurovsky, Edmund B. Bunge, Mary Bartlett Bunge, Richard P. J Cell Biol Article Under suitable conditions rat dorsal root ganglia differentiate and myelinate in culture, providing an organotypic model of the ganglion (8). Mature cultures of this type were irradiated with a 40 kR dose of 184 kvp X-rays and, after daily observation in the living state, were fixed for light and electron microscopy. Within 24 hr after irradiation, numerous Schwann cells investing unmyelinated axons acutely degenerate. The axons thus denuded display little change. Conversely, few ultrastructural changes develop in Schwann cells investing myelinated axons until after the 4th day. During the 4–14 day period, these Schwann cells and their related myelin sheaths undergo progressive deterioration. Associated axons decrease in diameter but are usually maintained. Myelin deterioration begins as a nodal lengthening and then progresses along two different routes. In intact Schwann cells, fragmentation of myelin begins in a pattern reminiscent of Wallerian degeneration, but its slow breakdown thereafter suggests metabolic disturbances in these Schwann cells. The second pattern of myelin deterioration, occurring after complete degeneration of the related Schwann cell, involves unusual configurational changes in the myelin lamellae. Atypical repeating periods are formed by systematic splitting of lamellae at each major dense line with further splitting at the intraperiod line (Type I) or by splitting in the region of every other intraperiod line (Type II); some sheaths display a compact, wavy, inner zone and an abnormally widened lamellar spacing peripherally (Type III). Extensive blebbing of myelin remnants characterizes the final stages of this extracellular myelin degradation. These observations provide the first description of ultrastructural changes produced by ionizing radiation in nerve fascicles in vitro. The Rockefeller University Press 1967-02-01 /pmc/articles/PMC2107259/ /pubmed/10976235 Text en Copyright © 1967 by The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Masurovsky, Edmund B.
Bunge, Mary Bartlett
Bunge, Richard P.
CYTOLOGICAL STUDIES OF ORGANOTYPIC CULTURES OF RAT DORSAL ROOT GANGLIA FOLLOWING X-IRRADIATION IN VITRO : II. Changes in Schwann Cells, Myelin Sheaths, and Nerve Fibers
title CYTOLOGICAL STUDIES OF ORGANOTYPIC CULTURES OF RAT DORSAL ROOT GANGLIA FOLLOWING X-IRRADIATION IN VITRO : II. Changes in Schwann Cells, Myelin Sheaths, and Nerve Fibers
title_full CYTOLOGICAL STUDIES OF ORGANOTYPIC CULTURES OF RAT DORSAL ROOT GANGLIA FOLLOWING X-IRRADIATION IN VITRO : II. Changes in Schwann Cells, Myelin Sheaths, and Nerve Fibers
title_fullStr CYTOLOGICAL STUDIES OF ORGANOTYPIC CULTURES OF RAT DORSAL ROOT GANGLIA FOLLOWING X-IRRADIATION IN VITRO : II. Changes in Schwann Cells, Myelin Sheaths, and Nerve Fibers
title_full_unstemmed CYTOLOGICAL STUDIES OF ORGANOTYPIC CULTURES OF RAT DORSAL ROOT GANGLIA FOLLOWING X-IRRADIATION IN VITRO : II. Changes in Schwann Cells, Myelin Sheaths, and Nerve Fibers
title_short CYTOLOGICAL STUDIES OF ORGANOTYPIC CULTURES OF RAT DORSAL ROOT GANGLIA FOLLOWING X-IRRADIATION IN VITRO : II. Changes in Schwann Cells, Myelin Sheaths, and Nerve Fibers
title_sort cytological studies of organotypic cultures of rat dorsal root ganglia following x-irradiation in vitro : ii. changes in schwann cells, myelin sheaths, and nerve fibers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2107259/
https://www.ncbi.nlm.nih.gov/pubmed/10976235
work_keys_str_mv AT masurovskyedmundb cytologicalstudiesoforganotypicculturesofratdorsalrootgangliafollowingxirradiationinvitroiichangesinschwanncellsmyelinsheathsandnervefibers
AT bungemarybartlett cytologicalstudiesoforganotypicculturesofratdorsalrootgangliafollowingxirradiationinvitroiichangesinschwanncellsmyelinsheathsandnervefibers
AT bungerichardp cytologicalstudiesoforganotypicculturesofratdorsalrootgangliafollowingxirradiationinvitroiichangesinschwanncellsmyelinsheathsandnervefibers