Cargando…
THE AXON HILLOCK AND THE INITIAL SEGMENT
Axon hillocks and initial segments have been recognized and studied in electron micrographs of a wide variety of neurons. In all multipolar neurons the fine structure of the initial segment has the same pattern, whether or not the axon is ensheathed in myelin. The internal structure of the initial s...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1968
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2107452/ https://www.ncbi.nlm.nih.gov/pubmed/5691973 |
Sumario: | Axon hillocks and initial segments have been recognized and studied in electron micrographs of a wide variety of neurons. In all multipolar neurons the fine structure of the initial segment has the same pattern, whether or not the axon is ensheathed in myelin. The internal structure of the initial segment is characterized by three special features: (a) a dense layer of finely granular material undercoating the plasma membrane, (b) scattered clusters of ribosomes, and (c) fascicles of microtubules. A similar undercoating occurs beneath the plasma membrane of myelinated axons at nodes of Ranvier. The ribosomes are not organized into Nissl bodies and are too sparsely distributed to produce basophilia. They vanish at the end of the initial segment. Fascicles of microtubules occur only in the axon hillock and initial segment and nowhere else in the neuron. Therefore, they are the principal identifying mark. Some speculations are presented on the relation between these special structural features and the special function of the initial segment. |
---|