Cargando…

FLAGELLAR ELONGATION AND SHORTENING IN CHLAMYDOMONAS : The Use of Cycloheximide and Colchicine to Study the Synthesis and Assembly of Flagellar Proteins

Flagella can be removed from the biflagellate Chlamydomonas and the cells begin to regenerate flagella almost immediately by deceleratory kinetics. Under usual conditions of deflagellation, more than 98% of all flagella are removed. Under less drastic conditions, cells can be selected in which one f...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosenbaum, Joel L., Moulder, John E., Ringo, David L.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1969
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2107765/
https://www.ncbi.nlm.nih.gov/pubmed/5783876
Descripción
Sumario:Flagella can be removed from the biflagellate Chlamydomonas and the cells begin to regenerate flagella almost immediately by deceleratory kinetics. Under usual conditions of deflagellation, more than 98% of all flagella are removed. Under less drastic conditions, cells can be selected in which one flagellum is removed and the other left intact. When only one of the two flagella is amputated, the intact flagellum shortens by linear kinetics while the amputated one regenerates. The two flagella attain an equal intermediate length and then approach their initial length at the same rate. A concentration of cycloheximide which inhibits protein synthesis permits less than one-third of each flagellum to form when both flagella are amputated. When only one is amputated in cycloheximide, shortening proceeds normally and the degree of elongation in the amputated flagellum is greater than if both were amputated in the presence of cycloheximide. The shortening process is therefore independent of protein synthesis, and the protein from the shortening flagellum probably enters the pool of precursors available for flagellar formation. Partial regeneration of flagella occurs in concentrations of cycloheximide inhibitory to protein synthesis suggesting that some flagellar precursors are present. Cycloheximide and flagellar pulse-labeling studies indicate that precursor is used during the first part of elongation, is resynthesized at mid-elongation, and approaches its original level as the flagella reach their initial length. Colchicine completely blocks regeneration without affecting protein synthesis, and extended exposure of deflagellated cells to colchicine increases the amount of flagellar growth upon transfer to cycloheximide. When colchicine is applied to cells with only one flagellum removed, shortening continues normally but regeneration is blocked. Therefore, colchicine can be used to separate the processes of shortening and elongation. Radioautographic studies of the growth zone of Chlamydomonas flagella corroborate previous findings that assembly is occurring at the distal end (tip growth) of the organelle.