Cargando…
NUCLEATING SITES FOR THE ASSEMBLY OF CYTOPLASMIC MICROTUBULES IN THE ECTODERMAL CELLS OF BLASTULAE OF ARBACIA PUNCTULATA
In the ectodermal cells of sea urchin blastulae, the microtubules converge and appear to make contact with three distinct cytoplasmic foci or satellites associated with the basal body of the cilium. Beneath the nucleus, which lies in the apical end of the cell, the microtubules are aligned predomina...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1970
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2107888/ https://www.ncbi.nlm.nih.gov/pubmed/5527240 |
Sumario: | In the ectodermal cells of sea urchin blastulae, the microtubules converge and appear to make contact with three distinct cytoplasmic foci or satellites associated with the basal body of the cilium. Beneath the nucleus, which lies in the apical end of the cell, the microtubules are aligned predominantly parallel to the cell's long axis and could thus make contact with the satellites as is directly suggested by observations on sections at or near the planes of the satellites. After the embryos are treated with low temperature (0°C), the microtubules disassemble; however, the satellites can still be recognized. Upon rewarming, the microtubules reappear. In early stages of reformation, when the tubules in the cell consist of short segments, tubules have only been found in the apical part of the cell. One end of each microtubule appears to make contact with its respective satellite, or is aligned so that it could contact one of the satellites, provided serial sections were cut and collected in order. After longer periods of recovery, the microtubules elongate; as before, one end of each makes contact with a satellite or is aligned so that it could attach to a satellite. Segments of microtubules seen in the basal region of the cell are aligned parallel to the long axis of the cell as in the untreated ectodermal cells and are therefore interpreted as extensions of those tubules making contact with one of the satellites. On the basis of these observations, we suggest that assembly of microtubules is initiated at the satellites. These sites, perhaps best referred to as "nucleating sites," thereby could exert considerable control over the distribution of microtubules in cells. It is hoped that this preliminary report will be followed up by a more detailed study using serial sections. |
---|