Cargando…

A CYTOLOGICAL STUDY OF ARTIFICIAL PARTHENOGENESIS IN THE SEA URCHIN ARBACIA PUNCTULATA

Eggs of the sea urchin Arbacia punctulata were artificially activated with hypertonic seawater. The artificially activated eggs undergo the cortical reaction which is not distinguished by a wavelike progression as in the case of inseminated eggs. The cortical granules are released at random loci at...

Descripción completa

Detalles Bibliográficos
Autores principales: Sachs, Martin I., Anderson, Everett
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1970
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2108410/
https://www.ncbi.nlm.nih.gov/pubmed/4327513
Descripción
Sumario:Eggs of the sea urchin Arbacia punctulata were artificially activated with hypertonic seawater. The artificially activated eggs undergo the cortical reaction which is not distinguished by a wavelike progression as in the case of inseminated eggs. The cortical granules are released at random loci at the surface of the egg and result in spaces separated by large cytoplasmic projections. Unreacted cortical granules and ribosomes are found within the matrix comprising the large cytoplasmic projections. No "fertilization cone" is formed. The subsequent release of additional cortical granules results in the formation of a continuous perivitelline space, 15 min following activation. 85 min postactivation, an organization of annulate lamellae, endoplasmic reticulum of the smooth variety, and microtubules around a centriole is observed prior to nuclear division. Before the breakdown of the nuclear envelope a streak stage is formed. The streak is composed of a central core of annulate lamellae and is encompassed by endoplasmic reticulum and vesicular components. Condensation of chromatin is followed by the establishment of the mitotic apparatus. Centrioles were not found in the mature egg; however, they are present after activation prior to the first nuclear division, in the four-cell embryo, multicellular embryo, and at blastula. Artificially activated eggs have been observed to develop to the pluteus stage in more than 50% of the eggs treated.