Cargando…

MICROFILAMENTS AND CELL LOCOMOTION

The role of microfilaments in generating cell locomotion has been investigated in glial cells migrating in vitro. Such cells are found to contain two types of microfilament systems: First, a sheath of 50–70-A in diameter filaments is present in the cytoplasm at the base of the cells, just inside the...

Descripción completa

Detalles Bibliográficos
Autores principales: Spooner, Brian S., Yamada, Kenneth M., Wessells, Norman K.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1971
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2108496/
https://www.ncbi.nlm.nih.gov/pubmed/4933470
Descripción
Sumario:The role of microfilaments in generating cell locomotion has been investigated in glial cells migrating in vitro. Such cells are found to contain two types of microfilament systems: First, a sheath of 50–70-A in diameter filaments is present in the cytoplasm at the base of the cells, just inside the plasma membrane, and in cell processes. Second, a network of 50-A in diameter filaments is found just beneath the plasma membrane at the leading edge (undulating membrane locomotory organelle) and along the sides of the cell. The drug, cytochalasin B, causes a rapid cessation of migration and a disruption of the microfilament network. Other organelles, including the microfilament sheath and microtubules, are unaltered by the drug, and protein synthesis is not inhibited. Removal of cytochalasin results in complete recovery of migratory capabilities, even in the absence of virtually all protein synthesis. Colchicine, at levels sufficient to disrupt all microtubules, has no effect on undulating membrane activity, on net cell movement, or on microfilament integrity. The microfilament network is, therefore, indispensable for locomotion.