Cargando…
ELECTRON MICROSCOPE OBSERVATIONS ON MYOSIN FROM PHYSARUM POLYCEPHALUM
Myosin has been separated from Physarum polycephalum actomyosin in confirmation of the results of Hatano and Tazawa. In an intermediate step, myosin-enriched actomyosin has also been obtained. The mean yield of free myosin was 4.4 mg from 100 g of mold. It was obtained as water-clear solutions at µ...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1972
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2108659/ https://www.ncbi.nlm.nih.gov/pubmed/5061886 |
Sumario: | Myosin has been separated from Physarum polycephalum actomyosin in confirmation of the results of Hatano and Tazawa. In an intermediate step, myosin-enriched actomyosin has also been obtained. The mean yield of free myosin was 4.4 mg from 100 g of mold. It was obtained as water-clear solutions at µ = 0.055 with calcium ATPase activity of up to 0.5 µM P(i)/min per mg. Negatively stained preparations were examined by electron microscopy. Physarum myosin in 0.5 M KCl interacted with actin from rabbit skeletal muscle to form polarized arrowhead complexes similar to but less regular than those of natural actomyosin from muscle or myosin-enriched Physarum actomyosin. The Physarum myosin-enriched actomyosin at low ionic strength displayed evidence of head-to-tail and tail-to-tail aggregation attributable to the myosin component. Yet Physarum myosin alone did not produce detectable filaments at µ = 0.055 at pH 7, 6.5, or 5.8, nor when dialyzed against 0.01 M ammonium acetate, nor when the dielectric constant of the medium was reduced. However, aggregation approaching the extent of ‘thick filaments’ up to 0.3 µ long was found in some preparations of myosin-enriched actomyosin put into solutions containing adenosine triphosphate. Myosin alone in such solutions did not form filaments. The results are compatible with the idea that head-to-tail aggregations are favored by actin-myosin interactions in Physarum, possibly due to alignment of the extended or tail portions of this myosin molecule. |
---|