Cargando…
CORRELATION BETWEEN FIBER LENGTH, ULTRASTRUCTURE, AND THE LENGTH-TENSION RELATIONSHIP OF MAMMALIAN SMOOTH MUSCLE
The length-tension relationship was determined for strips of guinea pig taenia coli and correlated with the length and ultrastructural organization of the component fibers. The mean fiber length in "stretched" strips (passive ≥ active tension) was 30% greater than that for fibers in "...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1972
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2108683/ https://www.ncbi.nlm.nih.gov/pubmed/4621356 |
Sumario: | The length-tension relationship was determined for strips of guinea pig taenia coli and correlated with the length and ultrastructural organization of the component fibers. The mean fiber length in "stretched" strips (passive ≥ active tension) was 30% greater than that for fibers in "unstretched" strips (active >> passive tension). In stretched fibers the dense bodies and 100 A diameter myofilaments were consolidated into a mass near the center of fibers in cross-sectional profile. The thick myofilaments were segregated into the periphery of the fiber profiles. In unstretched fibers the dense bodies-100 A diameter filaments and the thick myofilaments were uniformly distributed throughout cross-sectional profiles. A tentative model is proposed to account for the change in fiber length and ultrastructural organization that accompanies stretch. The basic features of the model require the dense bodies to be linked together into a network by the 100 A diameter filaments. The functional consequences of stretching the fibers are discussed in relation to the model proposed for this network. |
---|