Cargando…

MICROTUBULE BIOGENESIS AND CELL SHAPE IN OCHROMONAS : I. The Distribution of Cytoplasmic and Mitotic Microtubules

In the first of two companion papers which attempt to correlate microtubules and their nucleating sites with developmental and cell division patterns in the unicellular flagellate, Ochromonas, the distribution of cytoplasmic and mitotic microtubules and various kinetosome-related fibers are detailed...

Descripción completa

Detalles Bibliográficos
Autores principales: Bouck, G. Benjamin, Brown, David L.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1973
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2108894/
https://www.ncbi.nlm.nih.gov/pubmed/4682900
Descripción
Sumario:In the first of two companion papers which attempt to correlate microtubules and their nucleating sites with developmental and cell division patterns in the unicellular flagellate, Ochromonas, the distribution of cytoplasmic and mitotic microtubules and various kinetosome-related fibers are detailed. Of the five kinetosome-related fibers, which have been found in Ochromonas, two, the kineto-beak fibers and the rhizoplast fibers are utilized as attachment sites for distinct groups of microtubules. The set of microtubules attached to the kineto-beak fibers apparently shape the anterior beak region of the cell whereas the rhizoplast microtubules appear to extend into and shape the tail in vegetative cells. In mitotic cells a rhizoplast is found at each spindle pole apparently serving as foci for the spindle microtubules. These findings are discussed in relation to the less well defined attachment sites for vegetative and mitotic microtubules in other kinds of cells. It is noted that the effects of depolymerizing microtubules in vivo might be easily quantitated in whole populations since no external wall or pellicle contributes to the maintenance or the biogenesis of the characteristic cell form of Ochromonas.