Cargando…

THE DEVELOPMENT OF MICROBODIES AND PEROXISOMAL ENZYMES IN GREENING BEAN LEAVES

The ontogeny of leaf microbodies (peroxisomes) has been followed by (a) fixing primary bean leaves at various stages of greening and examining them ultrastructurally, and (b) homogenizing leaves at the same stages and assaying them for three peroxisomal enzymes. A study employing light-grown seedlin...

Descripción completa

Detalles Bibliográficos
Autores principales: Gruber, Peter J., Becker, Wayne M., Newcomb, Eldon H.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1973
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2108903/
https://www.ncbi.nlm.nih.gov/pubmed/4682904
Descripción
Sumario:The ontogeny of leaf microbodies (peroxisomes) has been followed by (a) fixing primary bean leaves at various stages of greening and examining them ultrastructurally, and (b) homogenizing leaves at the same stages and assaying them for three peroxisomal enzymes. A study employing light-grown seedlings showed that when the leaves are still below ground and achlorophyllous, microbodies are present as small organelles (e.g., 0.3 µm in diameter) associated with endoplasmic reticulum, and that after the leaves have turned green and expanded fully, the microbodies occur as much larger organelles (e.g., 1.5 µm in diameter) associated with chloroplasts. Specific activities of the peroxisomal enzymes increase 3- to 10-fold during this period. A second study showed that when etiolated seedlings are transferred to light, the microbodies do not appear to undergo any immediate morphological change, but that by 72 h they have attained approximately the size and enzymatic activity possessed by microbodies in the mature primary leaves of light-grown plants. It is concluded from the ultrastructural observations that leaf microbodies form as small particles and gradually develop into larger ones through contributions from smooth portions of endoplasmic reticulum. In certain aspects, the development of peroxisomes appears analogous to that of chloroplasts. The possibility is examined that microbodies in green leaves may be relatively long-lived organelles.