Cargando…
MOLECULES AT THE EXTERNAL NUCLEAR SURFACE : Sialic Acid of Nuclear Membranes and Electrophoretic Mobility of Isolated Nuclei and Nucleoli
The molecules occurring as terminal residues on the external surfaces of nuclei prepared from rat liver by either sucrose-CaCl(2) or citric acid methods and nucleoli derived from the sucrose-CaCl(2) nuclei were studied chemically and electrokinetically. In 0.0145 M NaCl, 4.5% sorbitol, and 0.6 mM Na...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1973
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109112/ https://www.ncbi.nlm.nih.gov/pubmed/4761332 |
Sumario: | The molecules occurring as terminal residues on the external surfaces of nuclei prepared from rat liver by either sucrose-CaCl(2) or citric acid methods and nucleoli derived from the sucrose-CaCl(2) nuclei were studied chemically and electrokinetically. In 0.0145 M NaCl, 4.5% sorbitol, and 0.6 mM NaHCO(3) with pH 7.2 ± 0.1 at 25°C, the sucrose-CaCl(2) nuclei had an electrophoretic mobility of -1.92 µm/s/V/cm, the citric acid nuclei, -1.63 µm/s/V/cm, and the nucleoli, -2.53 µm/s/V/cm. The citric acid nuclei and the nucleoli contained no measurable sialic acid. The sucrose-CaCl(2) nuclei contained 0.7 nmol of sialic acid/mg nuclear protein; this was essentially located in the nuclear envelope. Treatment of these nuclei with 50 µg neuraminidase/mg protein resulted in release of 0.63 nmol of sialic acid/mg nuclear protein; treatment with 1 % trypsin caused release of 0.39 nmol of the sialic acid/mg nuclear protein. The pH-mobility curves for the particles indicated the sucrose-CaCl(2) nuclei surface had an acid-dissociable group of pK. ∼2.7 while the pK for the nucleoli was considerably lower. Nucleoli treated with 50 µg neuraminidase/mg particle protein had a mobility of -2.53 µm/s/V/cm while sucrose-CaCl(2) nuclei similarly treated had a mobility of -1.41 µm/s/V/cm. Hyaluronidase at 50 µg/mg protein had no effect on nucleoli mobility but decreased the sucrose-CaCl(2) nuclei mobility to -1.79 µm/s/V/cm. Trypsin at 1 % elevated the electrophoretic mobility of the sucrose-CaCl(2) nuclei slightly but decreased the mobility of the nucleoli to -2.09 µm/s/V/cm. DNase at 50 µg/mg protein had no effect on the mobility of the isolated sucrose-CaCl(2) nuclei but decreased the electrophoretic mobility of the nucleoli to -1.21 µm/s/V/cm. RNase at 50 µg/mg protein also had no effect on the electrophoretic mobility of the sucrose-CaCl(2) nuclei but decreased the nucleoli mobility to -2.10 µm/s/V/cm. Concanavalin A at 50 µg/mg protein did not alter the nucleoli electrophoretic mobility but decreased the sucrose-CaCl(2) nuclei electrophoretic mobility to -1.64 µm/s/V/cm. The results are interpreted to mean that the sucrose-CaCl(2) nuclear external surface contains terminal sialic acid residues in trypsin-sensitive glycoproteins, contains small amounts of hyaluronic acid, is completely devoid of nucleic acids, and binds concanavalin A. The nucleolus surface is interpreted to contain a complex made up of protein, RNA, and primarily DNA, to be devoid of sialic acid and hyaluronic acid, and not to bind concanavalin A. |
---|