Cargando…

HUMAN VASCULAR ENDOTHELIAL CELLS IN CULTURE : Growth and DNA Synthesis

Human endothelial cells, obtained by collagenase treatment of term umbilical cord veins, were cultured using Medium 199 supplemented with 20% fetal calf serum. Small clusters of cells initially spread on plastic or glass, coalesced and grew to form confluent monolayers of polygonal cells by 7 days....

Descripción completa

Detalles Bibliográficos
Autores principales: Gimbrone, Michael A., Cotran, Ramzi S., Folkman, Judah
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1974
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109230/
https://www.ncbi.nlm.nih.gov/pubmed/4363161
Descripción
Sumario:Human endothelial cells, obtained by collagenase treatment of term umbilical cord veins, were cultured using Medium 199 supplemented with 20% fetal calf serum. Small clusters of cells initially spread on plastic or glass, coalesced and grew to form confluent monolayers of polygonal cells by 7 days. Cells in primary and subcultures were identified as endothelium by the presence of Weibel-Palade bodies by electron microscopy. A morphologically distinct subpopulation of cells contaminating some primary endothelial cultures was selectively subcultured, and identified by ultrastructural criteria as vascular smooth muscle. Autoradiography of endothelial cells after exposure to [(3)H]thymidine showed progressive increases in labeling in growing cultures beginning at 24 h. In recently confluent cultures, labeling indices were 2.4% in central closely packed regions, and 53.2% in peripheral growing regions. 3 days after confluence, labeling was uniform, being 3.5 and 3.9% in central and peripheral areas, respectively. When small areas of confluent cultures were experimentally "denuded," there were localized increases in [(3)H]thymidine labeling and eventual reconstitution of the monolayer. Liquid scintillation measurements of [(3)H]thymidine incorporation in primary and secondary endothelial cultures in microwell trays showed a similar correlation of DNA synthesis with cell density. These data indicate that endothelial cell cultures may provide a useful in vitro model for studying pathophysiologic factors in endothelial regeneration.