Cargando…

Oriented thick and thin filaments in amoeba proteus

Actin and myosin filaments as a foundation of contractile systems are well established from ameba to man (3). Wolpert et al. (19) isolated by differential centrifugation from Amoeba proteus a motile fraction composed of filaments which moved upon the addition of ATP. Actin filaments are found in ame...

Descripción completa

Detalles Bibliográficos
Autores principales: Rinaldi, RA, Hrebenda, B
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1975
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109510/
https://www.ncbi.nlm.nih.gov/pubmed/1141376
Descripción
Sumario:Actin and myosin filaments as a foundation of contractile systems are well established from ameba to man (3). Wolpert et al. (19) isolated by differential centrifugation from Amoeba proteus a motile fraction composed of filaments which moved upon the addition of ATP. Actin filaments are found in amebas (1, 12, 13) which react with vertebrate heavy meromyosin (HMM), forming arrowhead complexes as vertebrate actin (3, 9), and are prominent within the ectoplasmic tube where some of them are attached to the plasmalemma (1, 12). Thick and thin filaments possessing the morphological characteristics of myosin and actin have been obtained from isolated ameba cytoplasm (18, 19). In addition, there are filaments exhibiting ATPase activity in amebas which react with actin (12, 16, 17). However, giant ameba (Chaos-proteus) shapes are difficult to preserve, and the excellent contributions referred to above are limited by visible distortions occurring in the amebas (rounding up, pseudopods disappearing, and cellular organelles swelling) upon fixation. Achievement of normal ameboid shape in recent glycerination work (15) led us to attempt other electron microscope fixation techniques, resulting in a surprising preservation of A. proteus with a unique orientation of thick and thin filaments in the ectoplasmic region.