Cargando…
The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons
This study of the slow component of axonal transport was aimed at two problems: the specific identification of polypeptides transported into the axon from the cell body, and the identification of structural polypeptides of the axoplasm. The axonal transport paradigm was used to obtain radioactively...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1975
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109569/ https://www.ncbi.nlm.nih.gov/pubmed/49355 |
_version_ | 1782139335484637184 |
---|---|
collection | PubMed |
description | This study of the slow component of axonal transport was aimed at two problems: the specific identification of polypeptides transported into the axon from the cell body, and the identification of structural polypeptides of the axoplasm. The axonal transport paradigm was used to obtain radioactively labeled axonal polypeptides in the rat ventral motor neuron and the cat spinal ganglion sensory neuron. Comparison of the slow component polypeptides from these two sources using sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis revealed that they are identical. In both cases five polypeptides account for more than 75% of the total radioactivity present in the slow component. Two of these polypeptides have been tentatively identified as tubulin, the microtubule protein, on the basis of their molecular weights. The three remaining polypeptides with molecular weights of 212,000, 160,000, and 68,000 daltons are constitutive, and as such appear to be associated with a single structure which has been tentatively identified as the 10- nm neurofilament. The 212,000-dalton polypeptide was found to comigrate in SDS gels with the heavy chain of chick muscle myosin. The demonstration on SDS gels that the slow component is composed of a small number of polypeptides which have identical molecular weights in neurons from different mammalian species suggests that these polypeptides comprise fundamental structures of vertebrate neurons. |
format | Text |
id | pubmed-2109569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1975 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21095692008-05-01 The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons J Cell Biol Articles This study of the slow component of axonal transport was aimed at two problems: the specific identification of polypeptides transported into the axon from the cell body, and the identification of structural polypeptides of the axoplasm. The axonal transport paradigm was used to obtain radioactively labeled axonal polypeptides in the rat ventral motor neuron and the cat spinal ganglion sensory neuron. Comparison of the slow component polypeptides from these two sources using sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis revealed that they are identical. In both cases five polypeptides account for more than 75% of the total radioactivity present in the slow component. Two of these polypeptides have been tentatively identified as tubulin, the microtubule protein, on the basis of their molecular weights. The three remaining polypeptides with molecular weights of 212,000, 160,000, and 68,000 daltons are constitutive, and as such appear to be associated with a single structure which has been tentatively identified as the 10- nm neurofilament. The 212,000-dalton polypeptide was found to comigrate in SDS gels with the heavy chain of chick muscle myosin. The demonstration on SDS gels that the slow component is composed of a small number of polypeptides which have identical molecular weights in neurons from different mammalian species suggests that these polypeptides comprise fundamental structures of vertebrate neurons. The Rockefeller University Press 1975-08-01 /pmc/articles/PMC2109569/ /pubmed/49355 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons |
title | The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons |
title_full | The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons |
title_fullStr | The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons |
title_full_unstemmed | The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons |
title_short | The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons |
title_sort | slow component of axonal transport. identification of major structural polypeptides of the axon and their generality among mammalian neurons |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109569/ https://www.ncbi.nlm.nih.gov/pubmed/49355 |