Cargando…
Membrane-bound ribosomes of myeloma cells. III. The role of the messenger RNA and the nascent polypeptide chain in the binding of ribosomes to membranes
Mild ribonuclease treatment of the membrane fraction of P3K cells released three types of membrane-bound ribosomal particles: (a) all the newly made native 40S subunits detected after 2 h of [3H]uridine pulse. Since after a 3-min pulse with [35S]methionine these membrane native subunits appear to co...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1975
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109571/ https://www.ncbi.nlm.nih.gov/pubmed/1176534 |
_version_ | 1782139336006828032 |
---|---|
collection | PubMed |
description | Mild ribonuclease treatment of the membrane fraction of P3K cells released three types of membrane-bound ribosomal particles: (a) all the newly made native 40S subunits detected after 2 h of [3H]uridine pulse. Since after a 3-min pulse with [35S]methionine these membrane native subunits appear to contain at least sevenfold more Met-tRNA per particle than the free native subunits, they may all be initiation complexes with mRNA molecules which have just become associated with the membranes; (b) about 50% of the ribosomes present in polyribosomes. Evidence is presented that the released ribosomes carry nascent chains about two and a half to three times shorter than those present on the ribosomes remaining bound to the membranes. It is proposed that in the membrane-bound polyribosomes of P3K cells, only the ribosomes closer to the 3' end of the mRNA molecules are directly bound, while the latest ribosomes to enter the polyribosomal structures are indirectly bound through the mRNA molecules; (c) a small number of 40S subunits of polyribosomal origin, presumably initiation complexes attached at the 5' end of mRNA molecules of polyribosomes. When the P3K cells were incubated with inhibitors acting at different steps of protein synthesis, it was found that puromycin and pactamycin decreased by about 40% the proportion of ribosomes in the membrane fraction, while cycloheximide and anisomycin had no such effect. The ribosomes remaining on the membrane fraction of puromycin-treated cells consisted of a few polyribosomes, and of an accumulation of 80S and 60S particles, which were almost entirely released by high salt treatment of the membranes. The membrane-bound ribosomes found after pactamycin treatment consisted of a few polyribosomes, with a striking accumulation of native 60S subunits and an increased number of native 40S subunits. On the basis of the observations made in this and the preceding papers, a model for the binding of ribosomes to membranes and for the ribosomal cycle on the membranes is proposed. It is suggested that ribosomal subunits exchange between free and membrane-bound polyribosomes through the cytoplasmic pool of free native subunits, and that their entry into membrane-bound ribosomes is mediated by mRNA molecules associated with membranes. |
format | Text |
id | pubmed-2109571 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1975 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21095712008-05-01 Membrane-bound ribosomes of myeloma cells. III. The role of the messenger RNA and the nascent polypeptide chain in the binding of ribosomes to membranes J Cell Biol Articles Mild ribonuclease treatment of the membrane fraction of P3K cells released three types of membrane-bound ribosomal particles: (a) all the newly made native 40S subunits detected after 2 h of [3H]uridine pulse. Since after a 3-min pulse with [35S]methionine these membrane native subunits appear to contain at least sevenfold more Met-tRNA per particle than the free native subunits, they may all be initiation complexes with mRNA molecules which have just become associated with the membranes; (b) about 50% of the ribosomes present in polyribosomes. Evidence is presented that the released ribosomes carry nascent chains about two and a half to three times shorter than those present on the ribosomes remaining bound to the membranes. It is proposed that in the membrane-bound polyribosomes of P3K cells, only the ribosomes closer to the 3' end of the mRNA molecules are directly bound, while the latest ribosomes to enter the polyribosomal structures are indirectly bound through the mRNA molecules; (c) a small number of 40S subunits of polyribosomal origin, presumably initiation complexes attached at the 5' end of mRNA molecules of polyribosomes. When the P3K cells were incubated with inhibitors acting at different steps of protein synthesis, it was found that puromycin and pactamycin decreased by about 40% the proportion of ribosomes in the membrane fraction, while cycloheximide and anisomycin had no such effect. The ribosomes remaining on the membrane fraction of puromycin-treated cells consisted of a few polyribosomes, and of an accumulation of 80S and 60S particles, which were almost entirely released by high salt treatment of the membranes. The membrane-bound ribosomes found after pactamycin treatment consisted of a few polyribosomes, with a striking accumulation of native 60S subunits and an increased number of native 40S subunits. On the basis of the observations made in this and the preceding papers, a model for the binding of ribosomes to membranes and for the ribosomal cycle on the membranes is proposed. It is suggested that ribosomal subunits exchange between free and membrane-bound polyribosomes through the cytoplasmic pool of free native subunits, and that their entry into membrane-bound ribosomes is mediated by mRNA molecules associated with membranes. The Rockefeller University Press 1975-10-01 /pmc/articles/PMC2109571/ /pubmed/1176534 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Membrane-bound ribosomes of myeloma cells. III. The role of the messenger RNA and the nascent polypeptide chain in the binding of ribosomes to membranes |
title | Membrane-bound ribosomes of myeloma cells. III. The role of the messenger RNA and the nascent polypeptide chain in the binding of ribosomes to membranes |
title_full | Membrane-bound ribosomes of myeloma cells. III. The role of the messenger RNA and the nascent polypeptide chain in the binding of ribosomes to membranes |
title_fullStr | Membrane-bound ribosomes of myeloma cells. III. The role of the messenger RNA and the nascent polypeptide chain in the binding of ribosomes to membranes |
title_full_unstemmed | Membrane-bound ribosomes of myeloma cells. III. The role of the messenger RNA and the nascent polypeptide chain in the binding of ribosomes to membranes |
title_short | Membrane-bound ribosomes of myeloma cells. III. The role of the messenger RNA and the nascent polypeptide chain in the binding of ribosomes to membranes |
title_sort | membrane-bound ribosomes of myeloma cells. iii. the role of the messenger rna and the nascent polypeptide chain in the binding of ribosomes to membranes |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109571/ https://www.ncbi.nlm.nih.gov/pubmed/1176534 |