Cargando…

The microsporidian spore invasion tube. The ultrastructure, isolation, and characterization of the protein comprising the tube

The extrusion apparatus of the microsporidian parasitic protozoan Nosema michaelis discharges an invasion (or polar) tube with a velocity suitalbe for piercing cells and injecting infective sporoplasm. The tube is composed of a polar tube protein (PTP) which consists of a single, low molecular weigh...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1976
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109716/
https://www.ncbi.nlm.nih.gov/pubmed/10309
Descripción
Sumario:The extrusion apparatus of the microsporidian parasitic protozoan Nosema michaelis discharges an invasion (or polar) tube with a velocity suitalbe for piercing cells and injecting infective sporoplasm. The tube is composed of a polar tube protein (PTP) which consists of a single, low molecular weight polypeptide slightly smaller than chymotrypsinogen-A. Assembled PTP tubes resist dissociation in sodium dodecyl sulfate and brief exposures in media at extreme ends of the pH range; however, the tubes are reduced by mercaptoethanol and dithiothreitol. When acidified, mercaptoethanol-reduced PTP self- assembles into plastic, two-dimensional monolayers. Dithiothreitol- reduced PTP will not reassemble when acidified. Evidence is presented which indicates that PTP is assembled as a tube within the spore; that the ejected tube has plasticity during sporoplasm passage; and, finally, that the subunits within the tube polymer are bound together, in part, by interprotein disulfide linkages.