Cargando…

Reduced DNA repair during differentiation of a myogenic cell line

Repair synthesis induced by 4-nitroquinoline-1-oxide (4NQO) in L6 myoblasts before and after cellular fusion was measured by [3H] thymidine incorporation into unreplicated DNA. The level of repair synthesis was reuced after the cells had fused into myotubes. The terminal addition of radioactive nucl...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1976
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109857/
https://www.ncbi.nlm.nih.gov/pubmed/821955
_version_ 1782139417904807936
collection PubMed
description Repair synthesis induced by 4-nitroquinoline-1-oxide (4NQO) in L6 myoblasts before and after cellular fusion was measured by [3H] thymidine incorporation into unreplicated DNA. The level of repair synthesis was reuced after the cells had fused into myotubes. The terminal addition of radioactive nucleotides into DNA strands occurred only to a minor extent, and the dilution of [3H] thymidine by intracellular nucleotide pools was shown not to be responsible for the observed difference in repair synthesis, Both the initial rate and the overall incorporation of [3H] thymidine were found to be 50% lower in the myotubes. 4NQO treatment of myoblasts and myotubes induced modifications in the DNA which were observed as single-strand breaks during alkaline sucrose sedimentation. After the myoblasts were allowed a post-treatment incubation, most of the single-strand breaks were not longer apparent. In contrast, a post-treatment incubation of myotubes did not change the extent of single-strand breakage seen. Both myoblasts and myotubes were equally effective in repairing single- strand breaks induced by X radiation. It would appear that when myoblasts fuse, a repair enzyme activity is lost, probably an endonuclease that recognizes one of the 4 NQO modifications of DNA. The result observed is a partial loss of repair synthetic ability and a complete loss of ability to remove the modification that appears as a single-strand break in alkali.
format Text
id pubmed-2109857
institution National Center for Biotechnology Information
language English
publishDate 1976
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21098572008-05-01 Reduced DNA repair during differentiation of a myogenic cell line J Cell Biol Articles Repair synthesis induced by 4-nitroquinoline-1-oxide (4NQO) in L6 myoblasts before and after cellular fusion was measured by [3H] thymidine incorporation into unreplicated DNA. The level of repair synthesis was reuced after the cells had fused into myotubes. The terminal addition of radioactive nucleotides into DNA strands occurred only to a minor extent, and the dilution of [3H] thymidine by intracellular nucleotide pools was shown not to be responsible for the observed difference in repair synthesis, Both the initial rate and the overall incorporation of [3H] thymidine were found to be 50% lower in the myotubes. 4NQO treatment of myoblasts and myotubes induced modifications in the DNA which were observed as single-strand breaks during alkaline sucrose sedimentation. After the myoblasts were allowed a post-treatment incubation, most of the single-strand breaks were not longer apparent. In contrast, a post-treatment incubation of myotubes did not change the extent of single-strand breakage seen. Both myoblasts and myotubes were equally effective in repairing single- strand breaks induced by X radiation. It would appear that when myoblasts fuse, a repair enzyme activity is lost, probably an endonuclease that recognizes one of the 4 NQO modifications of DNA. The result observed is a partial loss of repair synthetic ability and a complete loss of ability to remove the modification that appears as a single-strand break in alkali. The Rockefeller University Press 1976-09-01 /pmc/articles/PMC2109857/ /pubmed/821955 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Reduced DNA repair during differentiation of a myogenic cell line
title Reduced DNA repair during differentiation of a myogenic cell line
title_full Reduced DNA repair during differentiation of a myogenic cell line
title_fullStr Reduced DNA repair during differentiation of a myogenic cell line
title_full_unstemmed Reduced DNA repair during differentiation of a myogenic cell line
title_short Reduced DNA repair during differentiation of a myogenic cell line
title_sort reduced dna repair during differentiation of a myogenic cell line
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109857/
https://www.ncbi.nlm.nih.gov/pubmed/821955