Cargando…

Mucosal surface morphology of the toad urinary bladder. Scanning electron microscope study of the natriferic and hydro-osmotic response to vasopressin

The mucosal cell surface of the toad urinary bladder was examined by scanning electron microscopy, and changes in the structure of the surface of the granular cell were correlated with specific physiological responses to vasopressin. Survey views of the mucosal surface demonstrated that there was no...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1978
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110049/
https://www.ncbi.nlm.nih.gov/pubmed/649661
_version_ 1782139473025302528
collection PubMed
description The mucosal cell surface of the toad urinary bladder was examined by scanning electron microscopy, and changes in the structure of the surface of the granular cell were correlated with specific physiological responses to vasopressin. Survey views of the mucosal surface demonstrated that there was no consistent repeating anatomical relationship between the granular cell and the mitochondria-rich cell that would support the concept of cooperativeness in the response to vasopressin. During base-line states of Na+-transport and water flux, the microvilli on the mucosal surface of the granular cell are arranged in a ridge-like network with occasional individual projections. When water flux is increased by exposing the tissue to vasopressin, in the presence of an osmotic gradient across the tissue the microvilli on the granular cell lose the ridge structure and appear, predominantly, as individual projection. Variability-of this appearance points out the necessity of examining large areas and many samples before the significance of any morphological change can be assessed. Blocking the simultaneously occurring natriferic response of the toad urinary bladder with 10(-2)M ouabain does not prevent these changes in the microvilli. When the hydro-osmotic response is blocked by eliminating the osmotic gradient, the granular cell shows no consistent change in mucosal surface morphology even when fixed at the height of the natriferic response. The mitochondria-rich and mucous cells did not show any change in morphology throughout these studies. We conclude that the changes in the mucosal surface morphology of the toad bladder seen after exposure to vasopressin are a result of the increased water flux that occurs when an osmotic gradient exists across the tissue, and are not related to the natriferic response or any specific alteration in the membrane properties.
format Text
id pubmed-2110049
institution National Center for Biotechnology Information
language English
publishDate 1978
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21100492008-05-01 Mucosal surface morphology of the toad urinary bladder. Scanning electron microscope study of the natriferic and hydro-osmotic response to vasopressin J Cell Biol Articles The mucosal cell surface of the toad urinary bladder was examined by scanning electron microscopy, and changes in the structure of the surface of the granular cell were correlated with specific physiological responses to vasopressin. Survey views of the mucosal surface demonstrated that there was no consistent repeating anatomical relationship between the granular cell and the mitochondria-rich cell that would support the concept of cooperativeness in the response to vasopressin. During base-line states of Na+-transport and water flux, the microvilli on the mucosal surface of the granular cell are arranged in a ridge-like network with occasional individual projections. When water flux is increased by exposing the tissue to vasopressin, in the presence of an osmotic gradient across the tissue the microvilli on the granular cell lose the ridge structure and appear, predominantly, as individual projection. Variability-of this appearance points out the necessity of examining large areas and many samples before the significance of any morphological change can be assessed. Blocking the simultaneously occurring natriferic response of the toad urinary bladder with 10(-2)M ouabain does not prevent these changes in the microvilli. When the hydro-osmotic response is blocked by eliminating the osmotic gradient, the granular cell shows no consistent change in mucosal surface morphology even when fixed at the height of the natriferic response. The mitochondria-rich and mucous cells did not show any change in morphology throughout these studies. We conclude that the changes in the mucosal surface morphology of the toad bladder seen after exposure to vasopressin are a result of the increased water flux that occurs when an osmotic gradient exists across the tissue, and are not related to the natriferic response or any specific alteration in the membrane properties. The Rockefeller University Press 1978-05-01 /pmc/articles/PMC2110049/ /pubmed/649661 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Mucosal surface morphology of the toad urinary bladder. Scanning electron microscope study of the natriferic and hydro-osmotic response to vasopressin
title Mucosal surface morphology of the toad urinary bladder. Scanning electron microscope study of the natriferic and hydro-osmotic response to vasopressin
title_full Mucosal surface morphology of the toad urinary bladder. Scanning electron microscope study of the natriferic and hydro-osmotic response to vasopressin
title_fullStr Mucosal surface morphology of the toad urinary bladder. Scanning electron microscope study of the natriferic and hydro-osmotic response to vasopressin
title_full_unstemmed Mucosal surface morphology of the toad urinary bladder. Scanning electron microscope study of the natriferic and hydro-osmotic response to vasopressin
title_short Mucosal surface morphology of the toad urinary bladder. Scanning electron microscope study of the natriferic and hydro-osmotic response to vasopressin
title_sort mucosal surface morphology of the toad urinary bladder. scanning electron microscope study of the natriferic and hydro-osmotic response to vasopressin
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110049/
https://www.ncbi.nlm.nih.gov/pubmed/649661