Cargando…
Oriented adsorption of purple membrane to cationic surfaces
We have investigated the orientation of isolated fragments of Halobacterium halobium purple membrane (PM) adsorbed to poly-L-lysine- treated glass (PL-glass), by quanitative electron microscopy. Three lines of evidence support the conclusion that the cytoplasmic side of the membrane is preferentiall...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1978
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110052/ https://www.ncbi.nlm.nih.gov/pubmed/649662 |
Sumario: | We have investigated the orientation of isolated fragments of Halobacterium halobium purple membrane (PM) adsorbed to poly-L-lysine- treated glass (PL-glass), by quanitative electron microscopy. Three lines of evidence support the conclusion that the cytoplasmic side of the membrane is preferentially absorbed. First, monolayer freeze- fracture reveals nonrandom orientation; more fracture faces (89%) are particulate than smooth. Second, the amount of each membrane surface present can be assayed using polycationic ferritin; 90% of all adsorbed membrane fragments are labeled. Third, it is possible to distinguish two surfaces, "cracked" (the extracellular surface) and "pitted" (the cytoplasmic surface) , in slowly air-dried, platinum-carbon-shadowed membranes. When applied under standard conditions, more than 80% appear cracked. Selection for the cytoplasmic by the cationic substrate suggests that the isolated PM, buffered at pH 7.4 and in the light, has a higher negative charge on its cytoplasmic surface than on its extracellular surface. Nevertheless, cationic ferritin (CF) preferentially adsorbs to the extracellular surface. Orientation provides a striking example of biomembrane surface asymmetry as well as the means to examine the chemical reactivity and physical properties of surfaces of a purified, nonvesicular membrane fragment. |
---|