Cargando…

Oriented adsorption of purple membrane to cationic surfaces

We have investigated the orientation of isolated fragments of Halobacterium halobium purple membrane (PM) adsorbed to poly-L-lysine- treated glass (PL-glass), by quanitative electron microscopy. Three lines of evidence support the conclusion that the cytoplasmic side of the membrane is preferentiall...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1978
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110052/
https://www.ncbi.nlm.nih.gov/pubmed/649662
_version_ 1782139473807540224
collection PubMed
description We have investigated the orientation of isolated fragments of Halobacterium halobium purple membrane (PM) adsorbed to poly-L-lysine- treated glass (PL-glass), by quanitative electron microscopy. Three lines of evidence support the conclusion that the cytoplasmic side of the membrane is preferentially absorbed. First, monolayer freeze- fracture reveals nonrandom orientation; more fracture faces (89%) are particulate than smooth. Second, the amount of each membrane surface present can be assayed using polycationic ferritin; 90% of all adsorbed membrane fragments are labeled. Third, it is possible to distinguish two surfaces, "cracked" (the extracellular surface) and "pitted" (the cytoplasmic surface) , in slowly air-dried, platinum-carbon-shadowed membranes. When applied under standard conditions, more than 80% appear cracked. Selection for the cytoplasmic by the cationic substrate suggests that the isolated PM, buffered at pH 7.4 and in the light, has a higher negative charge on its cytoplasmic surface than on its extracellular surface. Nevertheless, cationic ferritin (CF) preferentially adsorbs to the extracellular surface. Orientation provides a striking example of biomembrane surface asymmetry as well as the means to examine the chemical reactivity and physical properties of surfaces of a purified, nonvesicular membrane fragment.
format Text
id pubmed-2110052
institution National Center for Biotechnology Information
language English
publishDate 1978
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21100522008-05-01 Oriented adsorption of purple membrane to cationic surfaces J Cell Biol Articles We have investigated the orientation of isolated fragments of Halobacterium halobium purple membrane (PM) adsorbed to poly-L-lysine- treated glass (PL-glass), by quanitative electron microscopy. Three lines of evidence support the conclusion that the cytoplasmic side of the membrane is preferentially absorbed. First, monolayer freeze- fracture reveals nonrandom orientation; more fracture faces (89%) are particulate than smooth. Second, the amount of each membrane surface present can be assayed using polycationic ferritin; 90% of all adsorbed membrane fragments are labeled. Third, it is possible to distinguish two surfaces, "cracked" (the extracellular surface) and "pitted" (the cytoplasmic surface) , in slowly air-dried, platinum-carbon-shadowed membranes. When applied under standard conditions, more than 80% appear cracked. Selection for the cytoplasmic by the cationic substrate suggests that the isolated PM, buffered at pH 7.4 and in the light, has a higher negative charge on its cytoplasmic surface than on its extracellular surface. Nevertheless, cationic ferritin (CF) preferentially adsorbs to the extracellular surface. Orientation provides a striking example of biomembrane surface asymmetry as well as the means to examine the chemical reactivity and physical properties of surfaces of a purified, nonvesicular membrane fragment. The Rockefeller University Press 1978-05-01 /pmc/articles/PMC2110052/ /pubmed/649662 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Oriented adsorption of purple membrane to cationic surfaces
title Oriented adsorption of purple membrane to cationic surfaces
title_full Oriented adsorption of purple membrane to cationic surfaces
title_fullStr Oriented adsorption of purple membrane to cationic surfaces
title_full_unstemmed Oriented adsorption of purple membrane to cationic surfaces
title_short Oriented adsorption of purple membrane to cationic surfaces
title_sort oriented adsorption of purple membrane to cationic surfaces
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110052/
https://www.ncbi.nlm.nih.gov/pubmed/649662