Cargando…

Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia

The morphology of the transition zone between the terminal plate of the basal body and the 9 + 2 region of the somatic (non-oral) cilium has been examined in Paramecium tetraurelia. Freeze-fracture and thin- section techniques disclosed both membrane specializations and various internal structural l...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1978
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110115/
https://www.ncbi.nlm.nih.gov/pubmed/690175
_version_ 1782139491255844864
collection PubMed
description The morphology of the transition zone between the terminal plate of the basal body and the 9 + 2 region of the somatic (non-oral) cilium has been examined in Paramecium tetraurelia. Freeze-fracture and thin- section techniques disclosed both membrane specializations and various internal structural linkages. Freeze-fracture material revealed sets of particles interrupting the unit membrane. The more distal of these form plaquelike arrays while the proximal set of particles forms the ciliary "necklace." The plaque regions correspond to anionic sites on the outer membrane surface as revealed by binding of polycationic ferritin. Both the plaque particles and the necklace particles appear to be in contact with outer doublet microtubules via a complex of connecting structures. In the interior of the transition zone an axosomal plate supports an axosome surrounded by a ring of lightly packed material. Only one of the two central tubules of the axoneme reaches and penetrates the axosome. Below the axosomal plate four rings, each approx. 20 nm wide, connect adjacent outer doublets. An intermediate plate lies proximal to these rings, and a terminal plate marks the proximal boundary of this zone. Nine transitional fibers extend from the region of the terminal plate to the plasmalemma. The observations described above have been used to construct a three-dimensional model of the transition region of "wild-type" Paramecium somatic cilia. It is anticipated that this model will be useful in future studies concerning possible function of transition-zone specializations, since Paramecium may be examined in both normal and reversed ciliary beating modes, and since mutants incapable of reverse beating are available.
format Text
id pubmed-2110115
institution National Center for Biotechnology Information
language English
publishDate 1978
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21101152008-05-01 Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia J Cell Biol Articles The morphology of the transition zone between the terminal plate of the basal body and the 9 + 2 region of the somatic (non-oral) cilium has been examined in Paramecium tetraurelia. Freeze-fracture and thin- section techniques disclosed both membrane specializations and various internal structural linkages. Freeze-fracture material revealed sets of particles interrupting the unit membrane. The more distal of these form plaquelike arrays while the proximal set of particles forms the ciliary "necklace." The plaque regions correspond to anionic sites on the outer membrane surface as revealed by binding of polycationic ferritin. Both the plaque particles and the necklace particles appear to be in contact with outer doublet microtubules via a complex of connecting structures. In the interior of the transition zone an axosomal plate supports an axosome surrounded by a ring of lightly packed material. Only one of the two central tubules of the axoneme reaches and penetrates the axosome. Below the axosomal plate four rings, each approx. 20 nm wide, connect adjacent outer doublets. An intermediate plate lies proximal to these rings, and a terminal plate marks the proximal boundary of this zone. Nine transitional fibers extend from the region of the terminal plate to the plasmalemma. The observations described above have been used to construct a three-dimensional model of the transition region of "wild-type" Paramecium somatic cilia. It is anticipated that this model will be useful in future studies concerning possible function of transition-zone specializations, since Paramecium may be examined in both normal and reversed ciliary beating modes, and since mutants incapable of reverse beating are available. The Rockefeller University Press 1978-08-01 /pmc/articles/PMC2110115/ /pubmed/690175 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia
title Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia
title_full Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia
title_fullStr Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia
title_full_unstemmed Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia
title_short Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia
title_sort ultrastructure of the proximal region of somatic cilia in paramecium tetraurelia
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110115/
https://www.ncbi.nlm.nih.gov/pubmed/690175