Cargando…
A freeze-fracture study of membrane events during neurohypophysial secretion
Freeze-fracture was used to study the membrane events taking place during neurosecretory granule discharge (exocytosis) and subsequent membrane internalization (endocytosis) in axons of neurohypophyses from control and water-deprived rats. En face views of the cytoplasmic leaflet (P face) of the spl...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1978
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110132/ https://www.ncbi.nlm.nih.gov/pubmed/690178 |
_version_ | 1782139495860142080 |
---|---|
collection | PubMed |
description | Freeze-fracture was used to study the membrane events taking place during neurosecretory granule discharge (exocytosis) and subsequent membrane internalization (endocytosis) in axons of neurohypophyses from control and water-deprived rats. En face views of the cytoplasmic leaflet (P face) of the split axolemma reveal circular depressions that represent the secretory granule membranes fused with the plasma membrane during exocytosis. These depressions often contain granule core material in the process of extrusion into the extracellular space. The membrane surrounding some of the exocytotic openings shows a decreased number of intramembrane particles (mean diameter, 8 nm) which are elsewhere more numerous and evenly distrubuted on the fracture face. Endocytotic sites appear as smaller plasma membrane invaginations, with associated intramembrane particles. Moreover, such invaginations often contain large particles (mean diameter, 12 nm) that appear as clusters on en face views of the membrane leaflet. Quantitative analysis indicates that the number of exocytotic images increases significantly in glands from water-deprived rats. Concomitantly, the number of endocytotic figures per unit area of membrane is raised as is the number of clusters of large particles. The observations demonstrate that, in the neurohypophysis, it is possible to distinguish exocytosis morphologically from endocytosis and that the two events can be assessed quantitatively. |
format | Text |
id | pubmed-2110132 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1978 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21101322008-05-01 A freeze-fracture study of membrane events during neurohypophysial secretion J Cell Biol Articles Freeze-fracture was used to study the membrane events taking place during neurosecretory granule discharge (exocytosis) and subsequent membrane internalization (endocytosis) in axons of neurohypophyses from control and water-deprived rats. En face views of the cytoplasmic leaflet (P face) of the split axolemma reveal circular depressions that represent the secretory granule membranes fused with the plasma membrane during exocytosis. These depressions often contain granule core material in the process of extrusion into the extracellular space. The membrane surrounding some of the exocytotic openings shows a decreased number of intramembrane particles (mean diameter, 8 nm) which are elsewhere more numerous and evenly distrubuted on the fracture face. Endocytotic sites appear as smaller plasma membrane invaginations, with associated intramembrane particles. Moreover, such invaginations often contain large particles (mean diameter, 12 nm) that appear as clusters on en face views of the membrane leaflet. Quantitative analysis indicates that the number of exocytotic images increases significantly in glands from water-deprived rats. Concomitantly, the number of endocytotic figures per unit area of membrane is raised as is the number of clusters of large particles. The observations demonstrate that, in the neurohypophysis, it is possible to distinguish exocytosis morphologically from endocytosis and that the two events can be assessed quantitatively. The Rockefeller University Press 1978-08-01 /pmc/articles/PMC2110132/ /pubmed/690178 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles A freeze-fracture study of membrane events during neurohypophysial secretion |
title | A freeze-fracture study of membrane events during neurohypophysial secretion |
title_full | A freeze-fracture study of membrane events during neurohypophysial secretion |
title_fullStr | A freeze-fracture study of membrane events during neurohypophysial secretion |
title_full_unstemmed | A freeze-fracture study of membrane events during neurohypophysial secretion |
title_short | A freeze-fracture study of membrane events during neurohypophysial secretion |
title_sort | freeze-fracture study of membrane events during neurohypophysial secretion |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110132/ https://www.ncbi.nlm.nih.gov/pubmed/690178 |