Cargando…

Formation of gap junctions by treatment in vitro with potassium conductance blockers

Gap junctions were regularly seen in thin sections of canine tracheal smooth muscle incubated in vitro. Their number was increased in tissued exposed in vitro to either of two potassium conductance blockers, tetraethylammonium (TEA) and 4-aminopyridine (4-AP), and at the same time the muscles became...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1978
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110136/
https://www.ncbi.nlm.nih.gov/pubmed/690170
Descripción
Sumario:Gap junctions were regularly seen in thin sections of canine tracheal smooth muscle incubated in vitro. Their number was increased in tissued exposed in vitro to either of two potassium conductance blockers, tetraethylammonium (TEA) and 4-aminopyridine (4-AP), and at the same time the muscles became mechanically active, with spontaneous contractions. The presence of gap junctions in this smooth muscle may provide one basis for cell-to-cell coupling, and their increase after TEA- and 4-AP-treatment could account for a decreased junctional resistance between cells, contributing to a longer space constant. However, an increase in gap junctions was not sufficient to change the behavior of trachealis smooth muscle from multiunit to single-unit type. Gap junctions in increased numbers persisted after washout of 4- AP, which caused inhibition of spontaneous contractions, and despite inhibition of the contractile effects of 4-AP by atropine. The rapid induction of gap junction formation was not dependent on de novo synthesis of protein. The fact that the number of gap junctions can be increased by chemical agents has important implications for control of their formation and provides a tool for analysis fo their role in cell- to-cell coupling.