Cargando…

Membrane events involved in myoblast fusion

Myoblast fusion has been studied in cultures of chick embryonic muscle utilizing ultrastructural techniques. The multinucleated muscle cells (myotubes) are generated by the fusion of two plasma membranes from adjacent cells, apparently by forming a single bilayer that is particle- free in freeze-fra...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1979
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110314/
https://www.ncbi.nlm.nih.gov/pubmed/468911
Descripción
Sumario:Myoblast fusion has been studied in cultures of chick embryonic muscle utilizing ultrastructural techniques. The multinucleated muscle cells (myotubes) are generated by the fusion of two plasma membranes from adjacent cells, apparently by forming a single bilayer that is particle- free in freeze-fracture replicas. This single bilayer subsequently collapses, and cytoplasmic continuity is established between the cells. The fusion between the two plasma membranes appears to take place primarily within particle-free domains (probably phospholipid enriched), and cytoplasmic unilamellar, particle-free vesicles are occasionally associated with these regions. These vesicles structurally resemble phospholipid vesicles (liposomes). They are present in normal myoblasts, but they are absent in certain fusion-arrested myoblast popluations, such as those treated with either 5-bromo-deoxyuridine (BUdR), cycloheximide (CHX), or pospholipase C (PLC). The unilamellar, particle-free vesicles are present in close proximity to the plasma membranes, and physical contact is observed frequently between the vesicle membrane and the plasma membrane. The regions of vesicle membrane-plasma membrane interaction are characteristically free of intramembrane particles. A model for myoblast fusion is presented that is based onan interpretation of these observations. This model suggests that the cytoplasmic vesicles initiate the generation of particle- depleted membrane domains, both being essential components in the fusion process.