Cargando…

Isolation and characterization of two forms of a cytoskeleton

Isolated petaloid coelomocytes from the sea urchin Strongylocentrotus droebachiensis transform to a filopodial morphology in hypotonic media. Electron micrographs of negatively stained Triton-insoluble cytoskeletons show that the petaloid form consists of a loose net of microfilaments while the filo...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1979
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110439/
https://www.ncbi.nlm.nih.gov/pubmed/574512
_version_ 1782139576035311616
collection PubMed
description Isolated petaloid coelomocytes from the sea urchin Strongylocentrotus droebachiensis transform to a filopodial morphology in hypotonic media. Electron micrographs of negatively stained Triton-insoluble cytoskeletons show that the petaloid form consists of a loose net of microfilaments while the filopodial form consists of paracrystalline bundles of microfilaments. Actin is the major protein of both forms of the cytoskeleton. Additional polypeptides have molecular weights of approximately 220,000, 64,000, 57,000, and 27,000 daltons. Relative to actin the filopodial cytoskeletons have an average of 2.5 times as much 57k polypeptide as the petaloid cytoskeletons. Treatment with 0.25 M NaCl dissociates the filament bundles into individual actin filaments free of the actin-associated polypeptides. Thus, one or more of these actin-associated polypeptides may be responsible for crosslinking the actin filaments into bundles and maintaining the three-dimensional nature of the cytoskeletons.
format Text
id pubmed-2110439
institution National Center for Biotechnology Information
language English
publishDate 1979
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21104392008-05-01 Isolation and characterization of two forms of a cytoskeleton J Cell Biol Articles Isolated petaloid coelomocytes from the sea urchin Strongylocentrotus droebachiensis transform to a filopodial morphology in hypotonic media. Electron micrographs of negatively stained Triton-insoluble cytoskeletons show that the petaloid form consists of a loose net of microfilaments while the filopodial form consists of paracrystalline bundles of microfilaments. Actin is the major protein of both forms of the cytoskeleton. Additional polypeptides have molecular weights of approximately 220,000, 64,000, 57,000, and 27,000 daltons. Relative to actin the filopodial cytoskeletons have an average of 2.5 times as much 57k polypeptide as the petaloid cytoskeletons. Treatment with 0.25 M NaCl dissociates the filament bundles into individual actin filaments free of the actin-associated polypeptides. Thus, one or more of these actin-associated polypeptides may be responsible for crosslinking the actin filaments into bundles and maintaining the three-dimensional nature of the cytoskeletons. The Rockefeller University Press 1979-10-01 /pmc/articles/PMC2110439/ /pubmed/574512 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Isolation and characterization of two forms of a cytoskeleton
title Isolation and characterization of two forms of a cytoskeleton
title_full Isolation and characterization of two forms of a cytoskeleton
title_fullStr Isolation and characterization of two forms of a cytoskeleton
title_full_unstemmed Isolation and characterization of two forms of a cytoskeleton
title_short Isolation and characterization of two forms of a cytoskeleton
title_sort isolation and characterization of two forms of a cytoskeleton
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110439/
https://www.ncbi.nlm.nih.gov/pubmed/574512