Cargando…

Localization of submembranous cations to the leading end of human neutrophils during chemotaxis

Potassium pyroantimonate was used to localize sites of bound cations in human neutrophils under conditions of random migration, stimulated random migration (chemokinesis), and directed migration (chemotaxis). The cells were placed in a standard chamber in which 0.45-micron micropore filters separate...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1979
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110455/
https://www.ncbi.nlm.nih.gov/pubmed/479306
_version_ 1782139580430942208
collection PubMed
description Potassium pyroantimonate was used to localize sites of bound cations in human neutrophils under conditions of random migration, stimulated random migration (chemokinesis), and directed migration (chemotaxis). The cells were placed in a standard chamber in which 0.45-micron micropore filters separated the cells from the stimulus (buffer, Escherichia coli endotoxin-activated serum or the synthetic chemotactic peptide N-formyl-Met-Leu-Phe). The small pore filters permitted pseudopod formation but impeded cell imgration through the filter. Cells examined under all conditions had electron-dense precipitates of antimonate salts in some granules. However, antimonate deposits were localized in the condensed chromatin of the nucleus during random migration and associated to a large extent with the uncondensed nuclear chromatin during chemokinesis and chemotaxis. Under conditions of chemokinesis deposition of antimonate procipitates appeared on the cytoplasmic side of the plasma membrane of neutrophils whereas under conditions of chemotaxis cation deposits beneath the cell membrane were localized to the pseudopods which were directed toward the chemoattractant. In addition to endotoxin-activated serum, concentrations of N-formyl-Met-Leu-Phe which caused neutrophil chemotaxis (10(-8) M) also caused cation deposition beneath the cell membrane at the leading end of the cell regardless of whether albumin was present in the incubation media. However, with higher concentrations of the synthetic peptide (10(-5) M) which caused granule release and were not chemotactic, submembranous cation deposition was not seen. EDTA (10 mM) and EGTA (10 mM) removed nuclear, granular, and submembranous cation deposits from neutrophils examined under conditions of chemotaxis. X-ray microprobe analysis of antimonate deposits revealed the possible presence of calcium but did not detect sodium or magnesium. The data indicate that chemotactic factors induce submembranous deposition of cations, most likely Ca++, which localize to the leading edge of cells exposed to a gradient of chemoattractant.
format Text
id pubmed-2110455
institution National Center for Biotechnology Information
language English
publishDate 1979
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21104552008-05-01 Localization of submembranous cations to the leading end of human neutrophils during chemotaxis J Cell Biol Articles Potassium pyroantimonate was used to localize sites of bound cations in human neutrophils under conditions of random migration, stimulated random migration (chemokinesis), and directed migration (chemotaxis). The cells were placed in a standard chamber in which 0.45-micron micropore filters separated the cells from the stimulus (buffer, Escherichia coli endotoxin-activated serum or the synthetic chemotactic peptide N-formyl-Met-Leu-Phe). The small pore filters permitted pseudopod formation but impeded cell imgration through the filter. Cells examined under all conditions had electron-dense precipitates of antimonate salts in some granules. However, antimonate deposits were localized in the condensed chromatin of the nucleus during random migration and associated to a large extent with the uncondensed nuclear chromatin during chemokinesis and chemotaxis. Under conditions of chemokinesis deposition of antimonate procipitates appeared on the cytoplasmic side of the plasma membrane of neutrophils whereas under conditions of chemotaxis cation deposits beneath the cell membrane were localized to the pseudopods which were directed toward the chemoattractant. In addition to endotoxin-activated serum, concentrations of N-formyl-Met-Leu-Phe which caused neutrophil chemotaxis (10(-8) M) also caused cation deposition beneath the cell membrane at the leading end of the cell regardless of whether albumin was present in the incubation media. However, with higher concentrations of the synthetic peptide (10(-5) M) which caused granule release and were not chemotactic, submembranous cation deposition was not seen. EDTA (10 mM) and EGTA (10 mM) removed nuclear, granular, and submembranous cation deposits from neutrophils examined under conditions of chemotaxis. X-ray microprobe analysis of antimonate deposits revealed the possible presence of calcium but did not detect sodium or magnesium. The data indicate that chemotactic factors induce submembranous deposition of cations, most likely Ca++, which localize to the leading edge of cells exposed to a gradient of chemoattractant. The Rockefeller University Press 1979-08-01 /pmc/articles/PMC2110455/ /pubmed/479306 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Localization of submembranous cations to the leading end of human neutrophils during chemotaxis
title Localization of submembranous cations to the leading end of human neutrophils during chemotaxis
title_full Localization of submembranous cations to the leading end of human neutrophils during chemotaxis
title_fullStr Localization of submembranous cations to the leading end of human neutrophils during chemotaxis
title_full_unstemmed Localization of submembranous cations to the leading end of human neutrophils during chemotaxis
title_short Localization of submembranous cations to the leading end of human neutrophils during chemotaxis
title_sort localization of submembranous cations to the leading end of human neutrophils during chemotaxis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110455/
https://www.ncbi.nlm.nih.gov/pubmed/479306