Cargando…
Identification and organization of the components in the isolated microvillus cytoskeleton
We have examined the effects of ATP and deoxycholate (DOC) on the cytoskeletal organization of Triton-demembranated microvilli (MV) isolated from chicken intestine brush borders. Isolated MV are composed of a core of tightly bundled microfilaments from which arms project laterally to the plasma memb...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1979
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110511/ https://www.ncbi.nlm.nih.gov/pubmed/574874 |
_version_ | 1782139594476617728 |
---|---|
collection | PubMed |
description | We have examined the effects of ATP and deoxycholate (DOC) on the cytoskeletal organization of Triton-demembranated microvilli (MV) isolated from chicken intestine brush borders. Isolated MV are composed of a core of tightly bundled microfilaments from which arms project laterally to the plasma membrane with a 33-nm periodicity. These lateral arms spiral around the core microfilaments as a helix with a 25 degrees pitch. Demembranated MV consist of four polypeptides with mol wt of 110,000, 95,000, 68,000, and 42,000, present in molar ratios of 1.1:1.6:1.3:10.0. After addition of 50 microM ATP and 0.1 mM Mg++, the cytoskeletons are organized as a tight bundle of microfilaments from which lateral arms are missing. In these ATP-treated cytoskeletons, the 110-kdalton polypeptide is reduced in amount and the 95,000, 68,000, and 42,000 polypeptides are present in a 1.3:1.2:10.0 ratio. In contrast, after incubation with 0.5% DOC, the core microfilaments are no longer tightly bundled yet the lateral arms remain attached with a distinct 33-nm periodicity. These DOC-treated cytoskeletons are depleted of the 95,000 and 68,000 polypeptides and are composed of the 110,000 and 42,000 polypeptides in a 2:10 molar ratio. These results suggest that the microfilaments are associated into a core bundle by the 95- and 68-kdalton polypeptides and from this core bundle project the lateral arms composed of the 110-kdalton polypeptide. |
format | Text |
id | pubmed-2110511 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1979 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21105112008-05-01 Identification and organization of the components in the isolated microvillus cytoskeleton J Cell Biol Articles We have examined the effects of ATP and deoxycholate (DOC) on the cytoskeletal organization of Triton-demembranated microvilli (MV) isolated from chicken intestine brush borders. Isolated MV are composed of a core of tightly bundled microfilaments from which arms project laterally to the plasma membrane with a 33-nm periodicity. These lateral arms spiral around the core microfilaments as a helix with a 25 degrees pitch. Demembranated MV consist of four polypeptides with mol wt of 110,000, 95,000, 68,000, and 42,000, present in molar ratios of 1.1:1.6:1.3:10.0. After addition of 50 microM ATP and 0.1 mM Mg++, the cytoskeletons are organized as a tight bundle of microfilaments from which lateral arms are missing. In these ATP-treated cytoskeletons, the 110-kdalton polypeptide is reduced in amount and the 95,000, 68,000, and 42,000 polypeptides are present in a 1.3:1.2:10.0 ratio. In contrast, after incubation with 0.5% DOC, the core microfilaments are no longer tightly bundled yet the lateral arms remain attached with a distinct 33-nm periodicity. These DOC-treated cytoskeletons are depleted of the 95,000 and 68,000 polypeptides and are composed of the 110,000 and 42,000 polypeptides in a 2:10 molar ratio. These results suggest that the microfilaments are associated into a core bundle by the 95- and 68-kdalton polypeptides and from this core bundle project the lateral arms composed of the 110-kdalton polypeptide. The Rockefeller University Press 1979-12-01 /pmc/articles/PMC2110511/ /pubmed/574874 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Identification and organization of the components in the isolated microvillus cytoskeleton |
title | Identification and organization of the components in the isolated microvillus cytoskeleton |
title_full | Identification and organization of the components in the isolated microvillus cytoskeleton |
title_fullStr | Identification and organization of the components in the isolated microvillus cytoskeleton |
title_full_unstemmed | Identification and organization of the components in the isolated microvillus cytoskeleton |
title_short | Identification and organization of the components in the isolated microvillus cytoskeleton |
title_sort | identification and organization of the components in the isolated microvillus cytoskeleton |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110511/ https://www.ncbi.nlm.nih.gov/pubmed/574874 |