Cargando…
Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells
In freeze-fracture (FF) preparations of ADH-stimulated toad urinary bladder, characteristic intramembrane particle (IMP) aggregates are seen on the protoplasmic (P) face of the luminal membrane of granular cells while complementary parallel grooves are found on the exoplasmic (E) face. These IMP agg...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1980
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110591/ https://www.ncbi.nlm.nih.gov/pubmed/6767731 |
_version_ | 1782139616800800768 |
---|---|
collection | PubMed |
description | In freeze-fracture (FF) preparations of ADH-stimulated toad urinary bladder, characteristic intramembrane particle (IMP) aggregates are seen on the protoplasmic (P) face of the luminal membrane of granular cells while complementary parallel grooves are found on the exoplasmic (E) face. These IMP aggregates specifically correlate with ADH-induced changes in water permeability. Tubular cytoplasmic structures whose membranes contain IMP aggregates which look identical to the IMP aggregates in the luminal membrane have also been described in granular cells from unstimulated and ADH-stimulated bladders. The diameter of these cytoplasmic structures (0.11 +/- 0.004 micrometers) corresponds to that of tubular invaginations of the luminal membrane seen in thin sections of ADH-treated bladders (0.13 +/- 0.005 micrometers). Continuity between the membranes of these cytoplasmic structures (which are not granules) and the luminal membrane has been directly observed in favorable cross-fractures. In FF preparations of the luminal membrane, these apparent fusion events are seen as round, ice-filled invaginations (0.13 +/- 0.01 micrometer Diam), of which about half have the characteristic ADH-associated aggregates near the point of membrane fusion. They are less numerous than, but linearly related to, the number of aggregates counted in the same preparations (n = 78, r = 0.71, P less than 0.01). These observations suggest that the IMP aggregates seen in luminal membrane after ADH stimulation are transferred preformed by fusion of cytoplasmic with luminal membrane. |
format | Text |
id | pubmed-2110591 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1980 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21105912008-05-01 Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells J Cell Biol Articles In freeze-fracture (FF) preparations of ADH-stimulated toad urinary bladder, characteristic intramembrane particle (IMP) aggregates are seen on the protoplasmic (P) face of the luminal membrane of granular cells while complementary parallel grooves are found on the exoplasmic (E) face. These IMP aggregates specifically correlate with ADH-induced changes in water permeability. Tubular cytoplasmic structures whose membranes contain IMP aggregates which look identical to the IMP aggregates in the luminal membrane have also been described in granular cells from unstimulated and ADH-stimulated bladders. The diameter of these cytoplasmic structures (0.11 +/- 0.004 micrometers) corresponds to that of tubular invaginations of the luminal membrane seen in thin sections of ADH-treated bladders (0.13 +/- 0.005 micrometers). Continuity between the membranes of these cytoplasmic structures (which are not granules) and the luminal membrane has been directly observed in favorable cross-fractures. In FF preparations of the luminal membrane, these apparent fusion events are seen as round, ice-filled invaginations (0.13 +/- 0.01 micrometer Diam), of which about half have the characteristic ADH-associated aggregates near the point of membrane fusion. They are less numerous than, but linearly related to, the number of aggregates counted in the same preparations (n = 78, r = 0.71, P less than 0.01). These observations suggest that the IMP aggregates seen in luminal membrane after ADH stimulation are transferred preformed by fusion of cytoplasmic with luminal membrane. The Rockefeller University Press 1980-04-01 /pmc/articles/PMC2110591/ /pubmed/6767731 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells |
title | Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells |
title_full | Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells |
title_fullStr | Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells |
title_full_unstemmed | Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells |
title_short | Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells |
title_sort | evidence that adh-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110591/ https://www.ncbi.nlm.nih.gov/pubmed/6767731 |