Cargando…
Regulation of the Chlamydomonas cell cycle by light and dark
By growing cells in alternating periods of light and darkness, we have found that the synchronization of phototrophically grown Chlamydomonas populations is regulated at two specific points in the cell cycle: the primary arrest (A) point, located in early G1, and the transition (T) point, located in...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1980
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110596/ https://www.ncbi.nlm.nih.gov/pubmed/6767730 |
_version_ | 1782139617995128832 |
---|---|
collection | PubMed |
description | By growing cells in alternating periods of light and darkness, we have found that the synchronization of phototrophically grown Chlamydomonas populations is regulated at two specific points in the cell cycle: the primary arrest (A) point, located in early G1, and the transition (T) point, located in mid-G1. At the A point, cell cycle progression becomes light dependent. At the T point, completion of the cycle becomes independent of light. Cells transferred from light to dark at cell cycle position between the two regulatory points enter a reversible resting state in which they remain viable and metabolically active, but do not progress through their cycles. The photosystem II inhibitor dichlorophenyldimethylurea (DCMU) mimics the A point block induced by darkness. This finding indicates that the A point block is mediated by a signal that operates through photosynthetic electron transport. Cells short of the T point will arrest in darkness although they contain considerable carbohydrate reserves. After the T point, a sharp increase occurs in starch degradation and in the endogenous respiration rate, indicating that some internal block to the availability of stored energy reserves has now been released, permitting cell cycle progression. |
format | Text |
id | pubmed-2110596 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1980 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21105962008-05-01 Regulation of the Chlamydomonas cell cycle by light and dark J Cell Biol Articles By growing cells in alternating periods of light and darkness, we have found that the synchronization of phototrophically grown Chlamydomonas populations is regulated at two specific points in the cell cycle: the primary arrest (A) point, located in early G1, and the transition (T) point, located in mid-G1. At the A point, cell cycle progression becomes light dependent. At the T point, completion of the cycle becomes independent of light. Cells transferred from light to dark at cell cycle position between the two regulatory points enter a reversible resting state in which they remain viable and metabolically active, but do not progress through their cycles. The photosystem II inhibitor dichlorophenyldimethylurea (DCMU) mimics the A point block induced by darkness. This finding indicates that the A point block is mediated by a signal that operates through photosynthetic electron transport. Cells short of the T point will arrest in darkness although they contain considerable carbohydrate reserves. After the T point, a sharp increase occurs in starch degradation and in the endogenous respiration rate, indicating that some internal block to the availability of stored energy reserves has now been released, permitting cell cycle progression. The Rockefeller University Press 1980-04-01 /pmc/articles/PMC2110596/ /pubmed/6767730 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Regulation of the Chlamydomonas cell cycle by light and dark |
title | Regulation of the Chlamydomonas cell cycle by light and dark |
title_full | Regulation of the Chlamydomonas cell cycle by light and dark |
title_fullStr | Regulation of the Chlamydomonas cell cycle by light and dark |
title_full_unstemmed | Regulation of the Chlamydomonas cell cycle by light and dark |
title_short | Regulation of the Chlamydomonas cell cycle by light and dark |
title_sort | regulation of the chlamydomonas cell cycle by light and dark |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110596/ https://www.ncbi.nlm.nih.gov/pubmed/6767730 |