Cargando…

Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis

Ultrastructural techniques and electron probe microanalysis were used to determine whether or not the smooth endoplasmic reticulum (SER) within presynaptic nerve terminals is a Ca-sequestering site. The three- dimensional structure of the SER was determined from serial sections of synaptosomes. The...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110617/
https://www.ncbi.nlm.nih.gov/pubmed/7372706
_version_ 1782139624178581504
collection PubMed
description Ultrastructural techniques and electron probe microanalysis were used to determine whether or not the smooth endoplasmic reticulum (SER) within presynaptic nerve terminals is a Ca-sequestering site. The three- dimensional structure of the SER was determined from serial sections of synaptosomes. The SER consists of flattened cisterns that may branch and are frequently juxtaposed to mitochondria. To investigate intraterminal Ca sequestration, synaptosomes were treated with saponin to disrupt the plasmalemmal permeability barrier. When these synaptosomes were incubated in solutions containing Ca, ATP, and oxalate, electrondense Ca oxalate deposits were found in intraterminal mitochondria, SER cisterns, and large vesicular profiles. Saponin- treated synaptosomes that were incubated in the presence of mitochondrial poisons contained electron-dense deposits within SER cisterns and large vesicular profiles, but very rarely in mitochondria. Similar deposits were observed within saponin-treated synaptosomes that were not post-fixed with OSO4, and within saponin-treated synaptosomes that were prepared for analysis by freeze-substitution. Electron-probe microanalyses of these deposits confirmed the presence of large concentrations of Ca. When oxalate was omitted from the incubation solutions, no electron-dense deposits were present in saponin-treated synaptosomes. In other control experiments, either the Ca ionophore A23187 or the Ca chelator EGTA was added to the incubation media; electron-dense deposits were very rarely observed within the intraterminal organelles of these saponin-treated synaptosomes. The data indicate that presynaptic nerve terminal SER is indeed a Ca- sequestering organelle.
format Text
id pubmed-2110617
institution National Center for Biotechnology Information
language English
publishDate 1980
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21106172008-05-01 Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis J Cell Biol Articles Ultrastructural techniques and electron probe microanalysis were used to determine whether or not the smooth endoplasmic reticulum (SER) within presynaptic nerve terminals is a Ca-sequestering site. The three- dimensional structure of the SER was determined from serial sections of synaptosomes. The SER consists of flattened cisterns that may branch and are frequently juxtaposed to mitochondria. To investigate intraterminal Ca sequestration, synaptosomes were treated with saponin to disrupt the plasmalemmal permeability barrier. When these synaptosomes were incubated in solutions containing Ca, ATP, and oxalate, electrondense Ca oxalate deposits were found in intraterminal mitochondria, SER cisterns, and large vesicular profiles. Saponin- treated synaptosomes that were incubated in the presence of mitochondrial poisons contained electron-dense deposits within SER cisterns and large vesicular profiles, but very rarely in mitochondria. Similar deposits were observed within saponin-treated synaptosomes that were not post-fixed with OSO4, and within saponin-treated synaptosomes that were prepared for analysis by freeze-substitution. Electron-probe microanalyses of these deposits confirmed the presence of large concentrations of Ca. When oxalate was omitted from the incubation solutions, no electron-dense deposits were present in saponin-treated synaptosomes. In other control experiments, either the Ca ionophore A23187 or the Ca chelator EGTA was added to the incubation media; electron-dense deposits were very rarely observed within the intraterminal organelles of these saponin-treated synaptosomes. The data indicate that presynaptic nerve terminal SER is indeed a Ca- sequestering organelle. The Rockefeller University Press 1980-05-01 /pmc/articles/PMC2110617/ /pubmed/7372706 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis
title Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis
title_full Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis
title_fullStr Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis
title_full_unstemmed Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis
title_short Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis
title_sort localization of calcium in presynaptic nerve terminals. an ultrastructural and electron microprobe analysis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110617/
https://www.ncbi.nlm.nih.gov/pubmed/7372706