Cargando…

Localization and Biosynthesis of NADH-Cytochrome b(5) reductase, an integral membrane protein, in rat liver cells. III. Evidence for the independent insertion and turnover of the enzyme in various subcellular compartments

The biosynthesis and turnover of rat liver NADH-cytochrome b(5) reductase was studied in in vivo pulse-labeling and long-term, double-labeling experiments. Rats under thiopental anesthesia were injected into the portal vein with [(3)H]L-leucine and sacrificed at various times after the injection. NA...

Descripción completa

Detalles Bibliográficos
Autores principales: Borgese, N, Pietrini, G, Meldolesi, J
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110664/
https://www.ncbi.nlm.nih.gov/pubmed/7419581
_version_ 1782139637684240384
author Borgese, N
Pietrini, G
Meldolesi, J
author_facet Borgese, N
Pietrini, G
Meldolesi, J
author_sort Borgese, N
collection PubMed
description The biosynthesis and turnover of rat liver NADH-cytochrome b(5) reductase was studied in in vivo pulse-labeling and long-term, double-labeling experiments. Rats under thiopental anesthesia were injected into the portal vein with [(3)H]L-leucine and sacrificed at various times after the injection. NADH-cytochrome b(5) reductase was extracted from liver cell fractions by cathepsin D-catalyzed cleavage and was then immunoadsorbed onto antireductase-bearing affinity columns in the presence of excess unlabeled rat serum. After elution of the enzyme from the columns with a pH-2.2 buffer, the amount of the reductase protein in the samples was determined by radioimmunoassay, and the radioactivity in reductase was determined on SDS polyacrylamide gel reductase bands. The specific radioactivity of the reductase extracted from the homogenate as well as from rough and smooth microsomal, mitochondrial, and Golgi fractions, estimated at the end of the pulse (10 min after the injection) and at various time points thereafter, remained approximately constant over a 6-h period. These data suggest tha tth eenzyme is independently inserted into the various membranes where it is located. Moreover, the specific radioactivity of the mitochondrial reductase was lower than that of the other fractions, suggesting that it turns over at a slower rate. The lower turnover rate of the mitochondrial enzyme was confirmed by long-term, double-labeling experiments carried out according to the technique of Arias et al. (J. Biol. Chem. 244: 3303-3315.). The relevance of these findings in relation to the understanding of membrane biogenesis and turnover is discussed.
format Text
id pubmed-2110664
institution National Center for Biotechnology Information
language English
publishDate 1980
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21106642008-05-01 Localization and Biosynthesis of NADH-Cytochrome b(5) reductase, an integral membrane protein, in rat liver cells. III. Evidence for the independent insertion and turnover of the enzyme in various subcellular compartments Borgese, N Pietrini, G Meldolesi, J J Cell Biol Articles The biosynthesis and turnover of rat liver NADH-cytochrome b(5) reductase was studied in in vivo pulse-labeling and long-term, double-labeling experiments. Rats under thiopental anesthesia were injected into the portal vein with [(3)H]L-leucine and sacrificed at various times after the injection. NADH-cytochrome b(5) reductase was extracted from liver cell fractions by cathepsin D-catalyzed cleavage and was then immunoadsorbed onto antireductase-bearing affinity columns in the presence of excess unlabeled rat serum. After elution of the enzyme from the columns with a pH-2.2 buffer, the amount of the reductase protein in the samples was determined by radioimmunoassay, and the radioactivity in reductase was determined on SDS polyacrylamide gel reductase bands. The specific radioactivity of the reductase extracted from the homogenate as well as from rough and smooth microsomal, mitochondrial, and Golgi fractions, estimated at the end of the pulse (10 min after the injection) and at various time points thereafter, remained approximately constant over a 6-h period. These data suggest tha tth eenzyme is independently inserted into the various membranes where it is located. Moreover, the specific radioactivity of the mitochondrial reductase was lower than that of the other fractions, suggesting that it turns over at a slower rate. The lower turnover rate of the mitochondrial enzyme was confirmed by long-term, double-labeling experiments carried out according to the technique of Arias et al. (J. Biol. Chem. 244: 3303-3315.). The relevance of these findings in relation to the understanding of membrane biogenesis and turnover is discussed. The Rockefeller University Press 1980-07-01 /pmc/articles/PMC2110664/ /pubmed/7419581 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Borgese, N
Pietrini, G
Meldolesi, J
Localization and Biosynthesis of NADH-Cytochrome b(5) reductase, an integral membrane protein, in rat liver cells. III. Evidence for the independent insertion and turnover of the enzyme in various subcellular compartments
title Localization and Biosynthesis of NADH-Cytochrome b(5) reductase, an integral membrane protein, in rat liver cells. III. Evidence for the independent insertion and turnover of the enzyme in various subcellular compartments
title_full Localization and Biosynthesis of NADH-Cytochrome b(5) reductase, an integral membrane protein, in rat liver cells. III. Evidence for the independent insertion and turnover of the enzyme in various subcellular compartments
title_fullStr Localization and Biosynthesis of NADH-Cytochrome b(5) reductase, an integral membrane protein, in rat liver cells. III. Evidence for the independent insertion and turnover of the enzyme in various subcellular compartments
title_full_unstemmed Localization and Biosynthesis of NADH-Cytochrome b(5) reductase, an integral membrane protein, in rat liver cells. III. Evidence for the independent insertion and turnover of the enzyme in various subcellular compartments
title_short Localization and Biosynthesis of NADH-Cytochrome b(5) reductase, an integral membrane protein, in rat liver cells. III. Evidence for the independent insertion and turnover of the enzyme in various subcellular compartments
title_sort localization and biosynthesis of nadh-cytochrome b(5) reductase, an integral membrane protein, in rat liver cells. iii. evidence for the independent insertion and turnover of the enzyme in various subcellular compartments
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110664/
https://www.ncbi.nlm.nih.gov/pubmed/7419581
work_keys_str_mv AT borgesen localizationandbiosynthesisofnadhcytochromeb5reductaseanintegralmembraneproteininratlivercellsiiievidencefortheindependentinsertionandturnoveroftheenzymeinvarioussubcellularcompartments
AT pietrinig localizationandbiosynthesisofnadhcytochromeb5reductaseanintegralmembraneproteininratlivercellsiiievidencefortheindependentinsertionandturnoveroftheenzymeinvarioussubcellularcompartments
AT meldolesij localizationandbiosynthesisofnadhcytochromeb5reductaseanintegralmembraneproteininratlivercellsiiievidencefortheindependentinsertionandturnoveroftheenzymeinvarioussubcellularcompartments