Cargando…
Biochemical and ultrastructural aspects of Mr 165,000 M-protein in cross-striated chicken muscle
To better understand the relationship between the Mr 165,000 M-line protein (M-protein) and H-zone structure in skeletal and in cardiac muscle, as well as the possible interaction of M-protein with another skeletal muscle M-line component, the homodimeric creatine kinase isoenzyme composed of two M...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1980
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110687/ https://www.ncbi.nlm.nih.gov/pubmed/6997322 |
_version_ | 1782139642823311360 |
---|---|
collection | PubMed |
description | To better understand the relationship between the Mr 165,000 M-line protein (M-protein) and H-zone structure in skeletal and in cardiac muscle, as well as the possible interaction of M-protein with another skeletal muscle M-line component, the homodimeric creatine kinase isoenzyme composed of two M subunits (MM-CK), we performed biochemical, immunological, and ultrastructural studies on myofibrils extracted by different procedures. In contrast to MM-CK, M-protein could not be completely removed from myofibrils by low ionic strength extraction. Fab-fragments of antibodies against M-protein could not release M- protein quantitatively from either breast or heart myofibrils but remained bound to the myofibrillar structure, whereas monovalent antibodies against MM-CK cause the specific release of MM-CK and the concomitant disappearance of the M-line from chicken skeletal muscle myofibrils. When MM-CK was removed from skeletal myofibrils by low ionic strength extraction or, more specifically, by incubation with anti-MM-CK Fab, M-protein was still not released quantitatively upon treatment with anti-M-protein Fab as judged from immunofluorescence data. In the ultrastructural investigation of low ionic strength extracted muscle fibers, M protein could be localized in two stripes on both sides of the former M-line, suggesting a reduced attachment to the residual H-zone structure, whereas the specific removal of MM-CK resulted in the same dense staining pattern for M-protein within the M- line as observed in untreated fibers. However, the binding of M-protein to the residual M-line structure seemed to be reduced, as a considerable amount of this protein could be identified in the supernate of sequentially incubated myofibrils. The results indicate a strong binding of M-protein within the H-zone structure of skeletal as well as heart myofibrils. |
format | Text |
id | pubmed-2110687 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1980 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21106872008-05-01 Biochemical and ultrastructural aspects of Mr 165,000 M-protein in cross-striated chicken muscle J Cell Biol Articles To better understand the relationship between the Mr 165,000 M-line protein (M-protein) and H-zone structure in skeletal and in cardiac muscle, as well as the possible interaction of M-protein with another skeletal muscle M-line component, the homodimeric creatine kinase isoenzyme composed of two M subunits (MM-CK), we performed biochemical, immunological, and ultrastructural studies on myofibrils extracted by different procedures. In contrast to MM-CK, M-protein could not be completely removed from myofibrils by low ionic strength extraction. Fab-fragments of antibodies against M-protein could not release M- protein quantitatively from either breast or heart myofibrils but remained bound to the myofibrillar structure, whereas monovalent antibodies against MM-CK cause the specific release of MM-CK and the concomitant disappearance of the M-line from chicken skeletal muscle myofibrils. When MM-CK was removed from skeletal myofibrils by low ionic strength extraction or, more specifically, by incubation with anti-MM-CK Fab, M-protein was still not released quantitatively upon treatment with anti-M-protein Fab as judged from immunofluorescence data. In the ultrastructural investigation of low ionic strength extracted muscle fibers, M protein could be localized in two stripes on both sides of the former M-line, suggesting a reduced attachment to the residual H-zone structure, whereas the specific removal of MM-CK resulted in the same dense staining pattern for M-protein within the M- line as observed in untreated fibers. However, the binding of M-protein to the residual M-line structure seemed to be reduced, as a considerable amount of this protein could be identified in the supernate of sequentially incubated myofibrils. The results indicate a strong binding of M-protein within the H-zone structure of skeletal as well as heart myofibrils. The Rockefeller University Press 1980-09-01 /pmc/articles/PMC2110687/ /pubmed/6997322 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Biochemical and ultrastructural aspects of Mr 165,000 M-protein in cross-striated chicken muscle |
title | Biochemical and ultrastructural aspects of Mr 165,000 M-protein in cross-striated chicken muscle |
title_full | Biochemical and ultrastructural aspects of Mr 165,000 M-protein in cross-striated chicken muscle |
title_fullStr | Biochemical and ultrastructural aspects of Mr 165,000 M-protein in cross-striated chicken muscle |
title_full_unstemmed | Biochemical and ultrastructural aspects of Mr 165,000 M-protein in cross-striated chicken muscle |
title_short | Biochemical and ultrastructural aspects of Mr 165,000 M-protein in cross-striated chicken muscle |
title_sort | biochemical and ultrastructural aspects of mr 165,000 m-protein in cross-striated chicken muscle |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110687/ https://www.ncbi.nlm.nih.gov/pubmed/6997322 |