Cargando…

Interactions of dynein arms with b subfibers of Tetrahymena cilia: quantitation of the effects of magnesium and adenosine triphosphate

Tetrahymena 30S dynein was extracted with 0.5 M KCl and tested for retention of several functional properties associated wtih its in situ force-generating capacity. The dynein fraction will rebind to extracted outer doublets in the presence of Mg2+ to restore dynein arms. The arms attach at one end...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110734/
https://www.ncbi.nlm.nih.gov/pubmed/6448256
_version_ 1782139655285637120
collection PubMed
description Tetrahymena 30S dynein was extracted with 0.5 M KCl and tested for retention of several functional properties associated wtih its in situ force-generating capacity. The dynein fraction will rebind to extracted outer doublets in the presence of Mg2+ to restore dynein arms. The arms attach at one end to the A subfiber and form bridges at the other end to the B subfiber of an adjacent doublet. Recombined arms retain an ATPase activity that remains coupled to potential generation of interdoublet sliding forces. To examine important aspects of the dynein- tubulin interaction that we presume are directly related to the dynein force-generating cross-bridge cycle, a simple and quantitative spectrophotometric assay was devised for monitoring the associations between isolated 30S dynein and the B subfiber. Utilizing this assay, the binding of dynein to B subfibers was found to be dependent upon divalent cations, saturating at 3 mM Mg2+. Micromolar concentrations of MgATP2- cause the release of dynein from the B subfiber; however, not all of the dynein bound under these conditions is released by ATP. ATP- insensitive dynein binding results from dynein interactions with non-B- tubule sites on outer-doublet and central-pair microtubules and from ATP-insensitive binding to sites on the B subfiber. Vanadate over a wide concentration range (10(-6)-10(-3) M) has no effect on the Mg2+- induced binding of dynein or its release by MgATP2-, and was used to inhibit secondary doublet disintegration in the suspensions. In the presence of 10 microM vanadate, dynein is maximally dissociated by MgATP2- concentrations greater than or equal to 1 microM with half- maximal release at 0.2 microM. These binding properties of isolated dynein arms closely resemble the cross-bridging behavior of in situ dynein arms reported previously, suggesting that quantitative studies such as those presented here may yield reliable information concerning the mechanism of force generation in dynein-microtubule motile systems. The results also suggest that vanadate may interact with an enzyme- product complex that has a low affinity for tubulin.
format Text
id pubmed-2110734
institution National Center for Biotechnology Information
language English
publishDate 1980
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21107342008-05-01 Interactions of dynein arms with b subfibers of Tetrahymena cilia: quantitation of the effects of magnesium and adenosine triphosphate J Cell Biol Articles Tetrahymena 30S dynein was extracted with 0.5 M KCl and tested for retention of several functional properties associated wtih its in situ force-generating capacity. The dynein fraction will rebind to extracted outer doublets in the presence of Mg2+ to restore dynein arms. The arms attach at one end to the A subfiber and form bridges at the other end to the B subfiber of an adjacent doublet. Recombined arms retain an ATPase activity that remains coupled to potential generation of interdoublet sliding forces. To examine important aspects of the dynein- tubulin interaction that we presume are directly related to the dynein force-generating cross-bridge cycle, a simple and quantitative spectrophotometric assay was devised for monitoring the associations between isolated 30S dynein and the B subfiber. Utilizing this assay, the binding of dynein to B subfibers was found to be dependent upon divalent cations, saturating at 3 mM Mg2+. Micromolar concentrations of MgATP2- cause the release of dynein from the B subfiber; however, not all of the dynein bound under these conditions is released by ATP. ATP- insensitive dynein binding results from dynein interactions with non-B- tubule sites on outer-doublet and central-pair microtubules and from ATP-insensitive binding to sites on the B subfiber. Vanadate over a wide concentration range (10(-6)-10(-3) M) has no effect on the Mg2+- induced binding of dynein or its release by MgATP2-, and was used to inhibit secondary doublet disintegration in the suspensions. In the presence of 10 microM vanadate, dynein is maximally dissociated by MgATP2- concentrations greater than or equal to 1 microM with half- maximal release at 0.2 microM. These binding properties of isolated dynein arms closely resemble the cross-bridging behavior of in situ dynein arms reported previously, suggesting that quantitative studies such as those presented here may yield reliable information concerning the mechanism of force generation in dynein-microtubule motile systems. The results also suggest that vanadate may interact with an enzyme- product complex that has a low affinity for tubulin. The Rockefeller University Press 1980-10-01 /pmc/articles/PMC2110734/ /pubmed/6448256 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Interactions of dynein arms with b subfibers of Tetrahymena cilia: quantitation of the effects of magnesium and adenosine triphosphate
title Interactions of dynein arms with b subfibers of Tetrahymena cilia: quantitation of the effects of magnesium and adenosine triphosphate
title_full Interactions of dynein arms with b subfibers of Tetrahymena cilia: quantitation of the effects of magnesium and adenosine triphosphate
title_fullStr Interactions of dynein arms with b subfibers of Tetrahymena cilia: quantitation of the effects of magnesium and adenosine triphosphate
title_full_unstemmed Interactions of dynein arms with b subfibers of Tetrahymena cilia: quantitation of the effects of magnesium and adenosine triphosphate
title_short Interactions of dynein arms with b subfibers of Tetrahymena cilia: quantitation of the effects of magnesium and adenosine triphosphate
title_sort interactions of dynein arms with b subfibers of tetrahymena cilia: quantitation of the effects of magnesium and adenosine triphosphate
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110734/
https://www.ncbi.nlm.nih.gov/pubmed/6448256