Cargando…

Rat hepatocytes bind to synthetic galactoside surfaces via a patch of asialoglycoprotein receptors

The binding of rat hepatocytes to flat polyacrylamide surfaces containing galactose is sugar-specific, requires Ca+2, and occurs only above a critical concentration of sugar in the substratum [Weigel et al., 1979, J. Biol. Chem., 254, 10,830). Binding is completely inhibited by asialo-orosomucoid bu...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110769/
https://www.ncbi.nlm.nih.gov/pubmed/6257731
_version_ 1782139663490744320
collection PubMed
description The binding of rat hepatocytes to flat polyacrylamide surfaces containing galactose is sugar-specific, requires Ca+2, and occurs only above a critical concentration of sugar in the substratum [Weigel et al., 1979, J. Biol. Chem., 254, 10,830). Binding is completely inhibited by asialo-orosomucoid but not by orosomucoid or asialo- agalacto-orosomucoid, suggesting that cell binding is mediated by asialoglycoprotein receptors. Asialo-orosomucoid was labeled with fluorescein isothiocyanate and used as a direct fluorescent probe to monitor the distribution of cell surface asialoglycoprotein receptors before and after hepatocyte binding to galactoside or control substrata. Cells bound at 37 degrees C were de-adhered at 4 degrees C using the Ca+2 chelator EGTA. The released cells were then stained with fluorescein-asialo-orosomucoid, fixed, washed, and examined by fluorescence microscopy. On freshly isolated cells before binding, the distribution of asialoglycoprotein receptors appears diffuse and nonclustered. However, more than half of the cells released intact from a galactoside surface had a single large (4 micrometer2) fluorescent patch. The receptor patch cannot be detected on cells while they are bound to a galactoside surface but rather only on released cells, indicating that the cell-substratum junction is the site of the receptor patch. No asialoglycoprotein receptor patches (less than or equal to 1%) were observed on cells that were incubated on, but did not bind to, an underivatized polyacrylamide surface or to a surface with a galactose concentration below the critical concentration for binding. Furthermore, no receptor patches were present on cells that had bound to and were subsequently released from substrata that did not contain galactose, including glass, tissue culture plastic, nontissue culture plastic, and collagen. The distribution of asialoglycoprotein receptors is preserved at 4 degrees C because at 37 degrees C the patches disappear with a half-life of approximately 2.6 min. The results directly demonstrate that a large cluster of asialoglycoprotein receptors mediates the binding of rat hepatocytes to a galactoside surface.
format Text
id pubmed-2110769
institution National Center for Biotechnology Information
language English
publishDate 1980
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21107692008-05-01 Rat hepatocytes bind to synthetic galactoside surfaces via a patch of asialoglycoprotein receptors J Cell Biol Articles The binding of rat hepatocytes to flat polyacrylamide surfaces containing galactose is sugar-specific, requires Ca+2, and occurs only above a critical concentration of sugar in the substratum [Weigel et al., 1979, J. Biol. Chem., 254, 10,830). Binding is completely inhibited by asialo-orosomucoid but not by orosomucoid or asialo- agalacto-orosomucoid, suggesting that cell binding is mediated by asialoglycoprotein receptors. Asialo-orosomucoid was labeled with fluorescein isothiocyanate and used as a direct fluorescent probe to monitor the distribution of cell surface asialoglycoprotein receptors before and after hepatocyte binding to galactoside or control substrata. Cells bound at 37 degrees C were de-adhered at 4 degrees C using the Ca+2 chelator EGTA. The released cells were then stained with fluorescein-asialo-orosomucoid, fixed, washed, and examined by fluorescence microscopy. On freshly isolated cells before binding, the distribution of asialoglycoprotein receptors appears diffuse and nonclustered. However, more than half of the cells released intact from a galactoside surface had a single large (4 micrometer2) fluorescent patch. The receptor patch cannot be detected on cells while they are bound to a galactoside surface but rather only on released cells, indicating that the cell-substratum junction is the site of the receptor patch. No asialoglycoprotein receptor patches (less than or equal to 1%) were observed on cells that were incubated on, but did not bind to, an underivatized polyacrylamide surface or to a surface with a galactose concentration below the critical concentration for binding. Furthermore, no receptor patches were present on cells that had bound to and were subsequently released from substrata that did not contain galactose, including glass, tissue culture plastic, nontissue culture plastic, and collagen. The distribution of asialoglycoprotein receptors is preserved at 4 degrees C because at 37 degrees C the patches disappear with a half-life of approximately 2.6 min. The results directly demonstrate that a large cluster of asialoglycoprotein receptors mediates the binding of rat hepatocytes to a galactoside surface. The Rockefeller University Press 1980-12-01 /pmc/articles/PMC2110769/ /pubmed/6257731 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Rat hepatocytes bind to synthetic galactoside surfaces via a patch of asialoglycoprotein receptors
title Rat hepatocytes bind to synthetic galactoside surfaces via a patch of asialoglycoprotein receptors
title_full Rat hepatocytes bind to synthetic galactoside surfaces via a patch of asialoglycoprotein receptors
title_fullStr Rat hepatocytes bind to synthetic galactoside surfaces via a patch of asialoglycoprotein receptors
title_full_unstemmed Rat hepatocytes bind to synthetic galactoside surfaces via a patch of asialoglycoprotein receptors
title_short Rat hepatocytes bind to synthetic galactoside surfaces via a patch of asialoglycoprotein receptors
title_sort rat hepatocytes bind to synthetic galactoside surfaces via a patch of asialoglycoprotein receptors
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110769/
https://www.ncbi.nlm.nih.gov/pubmed/6257731