Cargando…
Gap junction dynamics: reversible effects of divalent cations
Reversible changes in gap junction structure similar to those previously seen to parallel electrical uncoupling (9, 33, 34) are produced by treating with Ca++ or Mg++ gap junctions isolated in EDTA from calf lens fibers. The changes, characterized primarily by a switch from disordered to crystalline...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1980
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110777/ https://www.ncbi.nlm.nih.gov/pubmed/7462321 |
Sumario: | Reversible changes in gap junction structure similar to those previously seen to parallel electrical uncoupling (9, 33, 34) are produced by treating with Ca++ or Mg++ gap junctions isolated in EDTA from calf lens fibers. The changes, characterized primarily by a switch from disordered to crystalline particle packings, occur at a [Ca++] of 5 x 10(-7) M or higher and a [Mg++] of 1 x 10(-3) M or higher and can be reversed by exposing the junctions to Ca++- and Mg++-free EGTA solutions. Similar changes are obtained in junctions of rat stomach epithelia incubated at 37 degrees C in well-oxygenated Tyrode's solutions containing a Ca++ ionophore (A23187). Deep etching experiments on isolated lens junctions show that the true cytoplasmic surface of the junctions (PS face) is mostly bare, suggesting that the particles may not be connected to cytoskeletal elements. A hypothesis is proposed suggesting a mechanism of particle aggregation and channel narrowing based on neutralization of negative charges by divalent cations or H+. |
---|