Cargando…

Gap junction dynamics: reversible effects of hydrogen ions

Reversible crystallization of intramembrane particle packings is induced in gap junctions isolated from calf lens fibers by exposure to 3 x 10(-7) M or higher [H+] (pH 6.5 or lower). The changes from disordered to crystalline particle packings induced by low pH are similar to those produced in junct...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110789/
https://www.ncbi.nlm.nih.gov/pubmed/7462322
_version_ 1782139669158297600
collection PubMed
description Reversible crystallization of intramembrane particle packings is induced in gap junctions isolated from calf lens fibers by exposure to 3 x 10(-7) M or higher [H+] (pH 6.5 or lower). The changes from disordered to crystalline particle packings induced by low pH are similar to those produced in junctions of intact cells by uncoupling treatments, indicating that H+, like divalent cations, could be an uncoupling agent. The freeze-fracture appearance of both control and low pH-treated gap junctions is not altered by glutaraldehyde fixation and cryoprotective treatment, as suggested by experiments in which gap junctions of both intact cells and isolated fractions are freeze- fractured after rapid freezing to liquid N2 temperature according to Heuser et al. (13). In junctions exposed to low pH, the particles most often form orthogonal and rhombic arrays, frequently fused with each other. A number of structural characteristics of these arrays suggest that the particles of lens fiber gap junctions may be shaped as tetrameres.
format Text
id pubmed-2110789
institution National Center for Biotechnology Information
language English
publishDate 1980
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21107892008-05-01 Gap junction dynamics: reversible effects of hydrogen ions J Cell Biol Articles Reversible crystallization of intramembrane particle packings is induced in gap junctions isolated from calf lens fibers by exposure to 3 x 10(-7) M or higher [H+] (pH 6.5 or lower). The changes from disordered to crystalline particle packings induced by low pH are similar to those produced in junctions of intact cells by uncoupling treatments, indicating that H+, like divalent cations, could be an uncoupling agent. The freeze-fracture appearance of both control and low pH-treated gap junctions is not altered by glutaraldehyde fixation and cryoprotective treatment, as suggested by experiments in which gap junctions of both intact cells and isolated fractions are freeze- fractured after rapid freezing to liquid N2 temperature according to Heuser et al. (13). In junctions exposed to low pH, the particles most often form orthogonal and rhombic arrays, frequently fused with each other. A number of structural characteristics of these arrays suggest that the particles of lens fiber gap junctions may be shaped as tetrameres. The Rockefeller University Press 1980-12-01 /pmc/articles/PMC2110789/ /pubmed/7462322 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Gap junction dynamics: reversible effects of hydrogen ions
title Gap junction dynamics: reversible effects of hydrogen ions
title_full Gap junction dynamics: reversible effects of hydrogen ions
title_fullStr Gap junction dynamics: reversible effects of hydrogen ions
title_full_unstemmed Gap junction dynamics: reversible effects of hydrogen ions
title_short Gap junction dynamics: reversible effects of hydrogen ions
title_sort gap junction dynamics: reversible effects of hydrogen ions
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110789/
https://www.ncbi.nlm.nih.gov/pubmed/7462322