Cargando…

NEW MEMBRANE FORMATION DURING CYTOKINESIS IN NORMAL AND CYTOCHALASIN B-TREATED EGGS OF XENOPUS LAEVIS : I. Electron Microscope Observations

A method is described for measuring and calculating the preexisting surface in uncleaved Xenopus eggs and the rate of surface growth in cleaving eggs. Surface-marking experiments with cytochalasin B-treated eggs show that the unpigmented surface grows by de novo formation and not by expansion of pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Bluemink, John G., de Laat, Siegfried W.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1973
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110905/
https://www.ncbi.nlm.nih.gov/pubmed/4356573
Descripción
Sumario:A method is described for measuring and calculating the preexisting surface in uncleaved Xenopus eggs and the rate of surface growth in cleaving eggs. Surface-marking experiments with cytochalasin B-treated eggs show that the unpigmented surface grows by de novo formation and not by expansion of preexisting pigmented surface. The onset of new surface formation during first cleavage was studied by using transmission electron microscope and scanning electron microscope techniques. At 3–4 min and at 7–8 min after the onset of cleavage the eggs were fixed in the presence of ruthenium red (RR). Evidence is presented that unpigmented surface representing new membrane comes into appearance between four and eight min. This surface has a selective binding capacity for RR. Concomitantly with the appearance of new membrane, endoplasmic reticulum (ER) cisternae are in continuity with, and dense cytoplasmic inclusions coalesce with, the membrane along the furrow. The latter give rise to liposome-like bodies. The possibility is discussed that the ER cisternae transport a surface exudate (a carbohydrate complex), that the dense cytoplasmic inclusions represent pools of membrane precursor, and that membranogenesis takes place by direct insertion of pooled precursors into the cell surface. In a second paper, these findings will be correlated with electrophysiological measurements.