Cargando…

Nuclear matrix of HeLa S3 cells. Polypeptide composition during adenovirus infection and in phases of the cell cycle

A subnuclear fraction has been isolated from HeLa S3 nuclei after treatment with high salt buffer, deoxyribonuclease, and dithiothreitol. This fraction retains the approximate size and shape of nuclei and resembles the nuclear matrix recently isolated from rat liver nuclei. Ultrastructural and bioch...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1977
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110990/
https://www.ncbi.nlm.nih.gov/pubmed/830654
_version_ 1782139704157667328
collection PubMed
description A subnuclear fraction has been isolated from HeLa S3 nuclei after treatment with high salt buffer, deoxyribonuclease, and dithiothreitol. This fraction retains the approximate size and shape of nuclei and resembles the nuclear matrix recently isolated from rat liver nuclei. Ultrastructural and biochemical analyses indicate that this structure consists of nonmembranous elements as well as some membranous elements. Its chemical composition is 87% protein, 12% phospholipid, 1% DNA, and 0.1% RNA by weight. The protein constituents are resolved in SDS- polyacrylamide slab gels into 30-35 distinguishable bands in the apparent molecular weight range of 14,000 - 200,000 with major peptides at 14,000 - 18,000 and 45,000 - 75,000. Analysis of newly synthesized polypeptides by cylindrical gel electrophoresis reveals another cluster in the 90,000-130,000 molecular weight range. Infection with adenovirus results in an altered polypeptide profile. Additional polypeptides with apparent molecular weights of 21,000, 23,000, and 92,000 become major components by 22 h after infection. Concomitantly, some peptides in the 45,000-75,000 mol wt range become less prominent. In synchronized cells the relative staining capacity of the six bands in the 45,000-75,000 mol wt range changes during the cell cycle. Synthesis of at least some matrix polypeptides occures in all phases of the cell cycle, although there is decreased synthesis in late S/G2. In the absence of protein synthesis after cell division, at least some polypeptides in the 45,000- 75,000 mol wt range survive nuclear dispersal and subsequent reformation during mitosis. The possible significance of this subnuclear structure with regard to structure-function relationships within the nucleus during virus replication and during the life cycle of the cell is discussed.
format Text
id pubmed-2110990
institution National Center for Biotechnology Information
language English
publishDate 1977
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21109902008-05-01 Nuclear matrix of HeLa S3 cells. Polypeptide composition during adenovirus infection and in phases of the cell cycle J Cell Biol Articles A subnuclear fraction has been isolated from HeLa S3 nuclei after treatment with high salt buffer, deoxyribonuclease, and dithiothreitol. This fraction retains the approximate size and shape of nuclei and resembles the nuclear matrix recently isolated from rat liver nuclei. Ultrastructural and biochemical analyses indicate that this structure consists of nonmembranous elements as well as some membranous elements. Its chemical composition is 87% protein, 12% phospholipid, 1% DNA, and 0.1% RNA by weight. The protein constituents are resolved in SDS- polyacrylamide slab gels into 30-35 distinguishable bands in the apparent molecular weight range of 14,000 - 200,000 with major peptides at 14,000 - 18,000 and 45,000 - 75,000. Analysis of newly synthesized polypeptides by cylindrical gel electrophoresis reveals another cluster in the 90,000-130,000 molecular weight range. Infection with adenovirus results in an altered polypeptide profile. Additional polypeptides with apparent molecular weights of 21,000, 23,000, and 92,000 become major components by 22 h after infection. Concomitantly, some peptides in the 45,000-75,000 mol wt range become less prominent. In synchronized cells the relative staining capacity of the six bands in the 45,000-75,000 mol wt range changes during the cell cycle. Synthesis of at least some matrix polypeptides occures in all phases of the cell cycle, although there is decreased synthesis in late S/G2. In the absence of protein synthesis after cell division, at least some polypeptides in the 45,000- 75,000 mol wt range survive nuclear dispersal and subsequent reformation during mitosis. The possible significance of this subnuclear structure with regard to structure-function relationships within the nucleus during virus replication and during the life cycle of the cell is discussed. The Rockefeller University Press 1977-01-01 /pmc/articles/PMC2110990/ /pubmed/830654 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Nuclear matrix of HeLa S3 cells. Polypeptide composition during adenovirus infection and in phases of the cell cycle
title Nuclear matrix of HeLa S3 cells. Polypeptide composition during adenovirus infection and in phases of the cell cycle
title_full Nuclear matrix of HeLa S3 cells. Polypeptide composition during adenovirus infection and in phases of the cell cycle
title_fullStr Nuclear matrix of HeLa S3 cells. Polypeptide composition during adenovirus infection and in phases of the cell cycle
title_full_unstemmed Nuclear matrix of HeLa S3 cells. Polypeptide composition during adenovirus infection and in phases of the cell cycle
title_short Nuclear matrix of HeLa S3 cells. Polypeptide composition during adenovirus infection and in phases of the cell cycle
title_sort nuclear matrix of hela s3 cells. polypeptide composition during adenovirus infection and in phases of the cell cycle
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110990/
https://www.ncbi.nlm.nih.gov/pubmed/830654